人人终身学习知识网~是各类综合知识资源信息分享,提升综合素质与提高知识技能的终身学习网络平台

 找回密码
 立即注册

QQ登录

只需一步,快速开始

微信登录

微信扫码,快速开始

设随机变量X和Y对联和分布是正方形G={(x,y)|1≤x≤3,1≤y≤3}上的均匀分布,试求随机变量U=|X-Y|的概率密度ρ(u).

[复制链接]

问题:设随机变量X和Y对联和分布是正方形G={(x,y)|1≤x≤3,1≤y≤3}上的均匀分布,试求随机变量U=|X-Y|的概率密度ρ(u).

答案:↓↓↓

网友采纳  【解法1】由已知条件可得,X和Y的联合密度为:f(x,y)=141≤x≤3, 1≤y≤30 其他,设U=|X-Y|的分布函数为F(u),①当u≤0时,F(u)=0,②当u≥2时,F(u)=1,③当0<u<2时...
回复

使用道具 举报

小黑屋/人人终身学习知识网~是各类综合知识资源信息分享,提升综合素质与提高知识技能的终身学习网络平台

Powered by 5wangxiao

© 2007-2021 5wangxiao.Com Inc.

快速回复 返回顶部 返回列表