问题:【{an}为等差数列求证(1)aka(2k)a(3k)构成等差数列(2)a1+an=a(1+k)=a(n-k)(3)SkS(2k)-SkS(3k)-S(2k)构成等差数列】
答案:↓↓↓ 宋李俊的回答: 网友采纳 {an}为等差数列 假设an=a1+(n-1)d,d为公差,a1为第一项 则ak=a1+(k-1)d a(2k)=a1+(2k-1)d a(3k)=a1+(3k-1)d a(2k)-a(k)=[a1+(2k-1)d]-[a1+(k-1)d]=kd a(3k)-a(2k)=[a1+(3k-1)d]-[a1+(2k-1)d]=kd 所以得证等差 (2)题目写错了,应该是a1+an=a(1+k)+a(n-k) a(1+k)+a(n-k)=a1+kd+a1+(n-k-1)d =2a1+(n-k-1+k)d =2a1+(n-1)d a1+an=a1+a1+(n-1)d =2a1+(n-1)d 所以得证 (3)Sk=(a1+ak)k/2=(2a1+(k-1)d)k/2 S(2k)=(2a1+(2k-1)d)2k/2 S(3k)=(2a1+(3k-1)d)3k/2 所以[S(2k)-Sk]-Sk=[(2a1+(2k-1)d)2k/2-(2a1+(k-1)d)k/2]-(2a1+(k-1)d)k/2 =[(2a1+(2k-1)d)2k/2-(2a1+(k-1)d)2k/2] =(2k-1)dk-(k-1)dk =k^2*d [S(3k)-S(2k)]-[S(2k)-Sk]=[(2a1+(3k-1)d)3k/2-(2a1+(2k-1)d)2k/2]-[(2a1+(2k-1)d)2k/2-(2a1+(k-1)d)k/2] =k^2*d 所以等差 |