问题:【如图,已知△ABC是等边三角形,D、E分别在边BC、AC上,且CD=CE,连接DE并延长至点F,使EF=AE,连接AF、BE和CF.(1)请在图中找出一对全等三角形,用符号“≌”表示,并加以证明;(2)判断】
答案:↓↓↓ 高启才的回答: 网友采纳 (1)(选证一)△BDE≌△FEC. 证明:∵△ABC是等边三角形, ∴BC=AC,∠ACB=60度. ∵CD=CE, ∴△EDC是等边三角形. ∴DE=EC,∠CDE=∠DEC=60° ∴∠BDE=∠FEC=120度. 又∵EF=AE, ∴BD=FE. ∴△BDE≌△FEC. (选证二)△BCE≌△FDC. 证明:∵△ABC是等边三角形, ∴BC=AC,∠ACB=60度. 又∵CD=CE, ∴△EDC是等边三角形. ∴∠BCE=∠FDC=60°,DE=CE. ∵EF=AE, ∴EF+DE=AE+CE. ∴FD=AC=BC. ∴△BCE≌△FDC. (选证三)△ABE≌△ACF. 证明:∵△ABC是等边三角形, ∴AB=AC,∠ACB=∠BAC=60度. ∵CD=CE,∴△EDC是等边三角形. ∴∠AEF=∠CED=60度. ∵EF=AE,△AEF是等边三角形. ∴AE=AF,∠EAF=60度. ∴△ABE≌△ACF. (2)四边形ABDF是平行四边形. 理由:由(1)知,△ABC、△EDC、△AEF都是等边三角形. ∴∠CDE=∠ABC=∠EFA=60度. ∴AB∥DF,BD∥AF. ∴四边形ABDF是平行四边形. (3)由(2)知,四边形ABDF是平行四边形. ∴EF∥AB,EF≠AB. ∴四边形ABEF是梯形. 过E作EG⊥AB于G,则EG=23 |