人人终身学习知识网~是各类综合知识资源信息分享,提升综合素质与提高知识技能的终身学习网络平台

 找回密码
 立即注册

QQ登录

只需一步,快速开始

微信登录

微信扫码,快速开始

牛顿第二定律应用问题质点自一圆环的最高点A沿不同倾角的光滑轨道由静止滑到圆环上其它各点,试证明:虽然轨道倾角不同,但所需时间相等.并求出时间

[复制链接]

问题:牛顿第二定律应用问题质点自一圆环的最高点A沿不同倾角的光滑轨道由静止滑到圆环上其它各点,试证明:虽然轨道倾角不同,但所需时间相等.并求出时间

答案:↓↓↓

网友采纳  设轨道和竖直的直径成θ角,则轨道长度为2Rcosθ(R为半径),a=mgcosθ/m=gcosθ,2Rcosθ=0.5at²,t=2√R,由于所求结果与θ角无关,所以沿各个倾角滑下去所用时间相同,时间t=2√R
回复

使用道具 举报

小黑屋/人人终身学习知识网~是各类综合知识资源信息分享,提升综合素质与提高知识技能的终身学习网络平台

Powered by 5wangxiao

© 2007-2021 5wangxiao.Com Inc.

快速回复 返回顶部 返回列表