如图,vartriangleABC中,∠BAC=60∘,AB=2AC,点P在vartriangleABC内,且PA=3,PB=5,PC=2,求vartriangleABC的面积. 解:如右图,作vartriangleABQ,使得:∠QAB=∠PAC,∠ABQ=∠ACP, 则vartriangleABQ∽vartriangleACP,由于AB=2AC,∴相似比为2 于是AQ=2AP=23,BQ=2CP=4 ∠QAP=∠QAB+∠BAP=∠PAC+∠BAP=∠BAC=60∘ 由AQ:AP=2:1,知∠APQ=90∘, 于是PQ=3AP=3 ∴BP2=25=BQ2+PQ2,从而∠BQP=90∘, 作AM⊥BQ于M,由∠BQA=120∘,知∠AQM=60∘,QM=3,AM=3 于是:∴AB2=BM2+AM2=(4+3)2+32=28+83 故SvartriangleABC=12⋅AB⋅ACsin60∘=38AB2=6+732. |