人人终身学习知识网~是各类综合知识资源信息分享,提升综合素质与提高知识技能的终身学习网络平台

 找回密码
 立即注册

QQ登录

只需一步,快速开始

微信登录

微信扫码,快速开始

初一下数学竞赛辅导资料(16) 整数的一种分类 标签:广州奥数题

[复制链接]

内容提要

1.余数的定义:在等式A=mB+r中,如果A、B是整数,m是正整数,

r为小于m的非负整数,那么我们称r是A 除以m的余数。

即:在整数集合中被除数=除数×商+余数 (0≤余数除数)

例如:13,0,-1,-9除以5的余数分别是3,0,4,1

(∵-1=5(-1)+4。-9=5(-2)+1。)

2.显然,整数除以正整数m ,它的余数只有m种。

例如 整数除以2,余数只有0和1两种,除以3则余数有0、1、2三种。

3.整数的一种分类:按整数除以正整数m的余数,分为m类,称为按模m分类。例如:

m=2时,分为偶数、奇数两类,记作{2k},{2k-1}(k为整数)

m=3时,分为三类,记作{3k},{3k+1},{3k+2}.

或{3k},{3k+1},{3k-1}其中{3k-1}表示除以3余2。

m=5时,分为五类,{5k}.{5k+1},{5k+2},{5k+3},{5k+4}

或{5k},{5k±1},{5k±2},其中5k-2表示除以5余3。

4.余数的性质:整数按某个模m分类,它的余数有可加,可乘,可乘方的运算规律。

举例如下:

①(3k1+1)+(3k2+1)=3(k1+k2)+2 (余数1+1=2)

②(4k1+1)(4k2+3)=4(4k1k2+3k1+k2)+3(余数1×3=3)

③(5k±2)2=25k2±20k+4=5(5k2±4k)+4(余数22=4)

以上等式可叙述为:

① 两个整数除以3都余1,则它们的和除以3必余2。

② 两个整数除以4,分别余1和3,则它们的积除以4必余3。

③ 如果整数除以5,余数是2或3,那么它的平方数除以5,余数必是4或9。

余数的乘方,包括一切正整数次幂。

如:∵17除以5余2 ∴176除以5的余数是4 (26=64)

5. 运用整数分类解题时,它的关鍵是正确选用模m。

例题

例1. 今天是星期日,99天后是星期几?

分析:一星期是7天,选用模m=7, 求99除以7的余数

解:99=(7+2)9,它的余数与29的余数相同,

29=(23)3=83=(7+1)3它的余数与13相同,

∴99天后是星期一。

又解:设{A}表示A除以7的余数,

{99}={(7+2)9}={29}={83}={(7+1)3}={13}=1

例2. 设n为正整数,求43 n+1 除以9的余数。

分析:设法把幂的底数化为9k+r形式

解:43 n+1=4×43n=4×(43)n=4×(64)n=4×(9×7+1)n

∵(9×7+1)n除以9的余数是1n=1

∴43 n+1 除以9的余数是4。

例3. 求证三个连续整数的立方和是9的倍数

解:设三个连续整数为n-1,n,n+1

M=(n-1)3+n3+(n+1)3=3n(n2+2)

把整数n按模3,分为三类讨论。

当n=3k (k为整数,下同)时,M=3×3k[(3k)2+2]=9k(9k2+2)

当n=3k+1时,M=3(3k+1)[(3k+1)2+2]=3(3k+1)(9k2+6k+3)

=9(3k+1)(3k2+2k+1)

当n=3k+2时,M=3(3k+2)[(3k+2)2+2]=3(3k+2)(9k2+12k+6)

=9(3k+2)(3k2+4k+2)

∴对任意整数n,M都是9的倍数。

例4. 求证:方程x2-3y2=17没有整数解

证明:设整数x按模3分类讨论,

①当x=3k时,(3k)2-3y2=17, 3(3k2-y2)=17

⑵当x=3k±1时,(3k±1)2-3y2=17 3(3k2±2k-y2)=16

由①②左边的整数是3的倍数,而右边的17和16都不是3的倍数,

∴上述等式都不能成立,因此,方程x2-3y2=17没有整数解

例5. 求证:不论n取什么整数值,n2+n+1都不能被5整除

证明:把n按模5分类讨论,

当n=5k时,n2+n+1=(5k)2+5k+1=5(5k2+k)+1

当n=5k±1 时,n2+n+1=(5k±1)2+5k±1+1

=25k2±10k+1+5k±1+1=5(5k2±2k+k)+2±1

当n=5k±2时,n2+n+1=(5k±2)2+5k±2+1

=25k2±20k+4+5k±2+1=5(5k2±4k+k+1)±2

综上所述,不论n取什么整数值,n2+n+1都不能被5整除

又证:n2+n+1=n(n+1)+1

∵n(n+1)是两个连续整数的积,其个位数只能是0,2,6

∴n2+n+1的个位数只能是1,3,7,故都不能被5整除。

回复

使用道具 举报

小黑屋/人人终身学习知识网~是各类综合知识资源信息分享,提升综合素质与提高知识技能的终身学习网络平台

Powered by 5wangxiao

© 2007-2021 5wangxiao.Com Inc.

快速回复 返回顶部 返回列表