人人终身学习知识网~是各类综合知识资源信息分享,提升综合素质与提高知识技能的终身学习网络平台

 找回密码
 立即注册

QQ登录

只需一步,快速开始

微信登录

微信扫码,快速开始

华杯赛赛前冲刺班专题讲座:尾数问题例题 标签:华杯赛

[复制链接]

例1:n=2×2×2×…×2(2023个2相乘),所得积的末尾数字是几?

分析:n是2023个2的连乘积,可以记为n=2(2023次)。首先观察若干个2(从2的较低次幂入手)连乘积的末尾数字的变化规律,从而发现每4个2连乘为一循环,循环的顺序是2、4、8、6,其周期为4。

解:因为2023÷4=501……1,余数是1,即余下1个2。所以2023个2连乘,积的末位数字是2。

方法点睛:以2的连乘个数为被除数,用积的数字变化周期数为除数,用除得的余数推断出积的个位数。

例2:12+22+32+42+…+992+2023的个位数字是多少?(新加坡小学数学奥林匹克竞赛)

分析:把尾数相同的放在一组。每10个数一组,求出10个尾数的和。12+112+212+312+…+912尾数的和为2×10=20,和的尾数为0。同理,22+122+222+…+922的和的尾数也是0……

解:原式中有100个加数,以尾数相同的10个加数为一组,共有10组。每组和的个位数字都是0,所以这100个加数和的个位数仍为0。

方法点睛:观察数列后,利用交换律把尾数相同的交换到一起,再利用结合律,把每10个尾数相同的结合成一组。逐组计算和的尾数,最后再计算总和的尾数。

分析:观察这个式子可知,每个加数的尾数都是2,再看每个加数尾数前的数字,是1、2、3、4……99、100,这说明一共有100个数相加。

解:因为一共有100个尾数是2的数字相加,2×100=200,所以这100个加数和的个位数字是0。

方法点睛:加法算式中,所有个位数字和的尾数就是该式和的尾数。

例3:2023(2023)×2023(2023)积的末位数字是几?

分析:2023的连乘积的末位数字以4,6循环出现,周期为2;2023的连乘积的末位数字以9,1循环出现,周期也是2。

解:2023÷2=2023……1。

2023(2023)的个位数字即为2023(1)的个位数字4。

2023(2023)的个位数字即为2023(1)的个位数字9。

4×9=36,所以积的末位数字是6。

方法点睛:观察循环周期的变化,找出周期规律计算。

例4:2023(2023次)+2023(2023次)+2023(2023次)+2023(2023次)和的个位数字是几?

分析:先分别求出2023(2023次),2023(2023次),2023(2023次),2023(2023次)的个位数字,再求它们和个位数字。

解:因为分别观察2023,2023,2023,2023较低次幂的末尾数字的变化规律,发现每4个为一循环。所以2023÷4=501……3,即2023=501×4+3,则:

2023(2023次)的个位数字即为2023(3次)的个位数字8;

2023(2023次)的个位数字即为2023(3次)的个位数字7;

2023(2023次)的个位数字即为2023(3次)的个位数字3;

2023(2023次)的个位数字即为2023(3次)的个位数字2。

所以2023(2023次)+2023(2023次)+2023(2023次)+2023(2023次)和的个位数字是8+7+3+2=20的个位数字。因此,所求的答案是0。

方法点睛:2的连乘积的个位数字以2,4,8,6循环出现,周期为4;3的连乘积的个位数字以3,9,7,1循环出现,周期为4;7的连乘积的个位数字以7,9,3,1循环出现,周期为4;8的连乘积的个位数字以8,4,2,6循环出现,周期为4。

例5:算式(20232023+20232023+20232023)×20232023×20232023的个位数是多少(注20232023是2023个2023相乘)?

分析:按照4、6循环2023÷2=997……0,则20232023的个位数是6;5n(n1的整数)的个位数是5,则20232023的个位数是5;6n的个位是6,则20232023的个位是6;按照7、9、3、1循环,2023÷4=499……1,则20232023的个位数是7;按照8、4、2、6循环,2023÷4=499……2,则20232023的个位数是4。

解:(6+5+6)×7×4=476,所以原式的个位数为6。

方法点睛:一个整数的n次方的尾数等于它尾数n次方的尾数;整数积的尾数等于整数尾数之积的尾数;和的尾数等于尾数之和的尾数。

回复

使用道具 举报

小黑屋/人人终身学习知识网~是各类综合知识资源信息分享,提升综合素质与提高知识技能的终身学习网络平台

Powered by 5wangxiao

© 2007-2021 5wangxiao.Com Inc.

快速回复 返回顶部 返回列表