2023年第十八届华罗庚金杯少年数学邀请赛(简称:华杯赛)备战已经开始了,为了让大家能够更好的为比赛做准备,优学宁波奥数网小编将历年的一些真题讲解整理出来,供大家。 例:如图,在梯形ABCD中,AB∥CD,四边形ACED是平行四边形,延长DC交BE于F.求证:EF=FB 分析:这个题目本身不难,求证也容易,但通过对题设和结论的深入挖掘与探索,我们可以得出许多好的证法,总结如下: 证明一:如图所示,作BQ∥AD,交DF延长线于Q点,则四边形ABQD是平行四边形,从而BQ=AD,再由题设可证△CEF≌△QBF, 得证EF=FB. 证明二:如左图所示:作FM∥DA交AB于M,则四边形ADFM是平行四边形,从而FM=DA.再证△CEF≌△MFB,从而结论可得证. 证明三:作CN∥EB交AB于N,则四边形CNBF是□,从而CN=FB. 再证:△ANC≌△DFE,可得CN=EF,即EF=FB. 证明四:作DP∥FB交AB于P,证明△ADP≌△CEF,从而得出结论. 证明五:延长EC交AB于G,则四边形ADCG是□,∴CE=AD=GC,即C是EG中点.又CF∥GB,∴F是EB中点,结论得证. 证明六:连结AE交CD于O点,则O 是AE中点,又OF∥AB,∴F是AB中点,得证. 证明七:延长ED交BA延长线于H点,则HACD是□ , ∴CA=DH=ED ∴D是EH中点.又DF∥HB ∴F是EB中点,得证. 证明八:作ES∥CD交AD延长线于S,则CDSE是□ ∴DS=CE=AD ∴D是AS中点.又SE∥CD∥AB ∴F是EB中点,得证. 证明九:在证明一作的辅助线基础上,连结EQ,则可得ECBQ是□,从而F是□ECBQ对角线EB的中点。 总之,上述不同证法的辅助线可归结为以下两种: ①作平行线构成平行四边形和全等三角形进行等量代换。 ②作平行线,由题设产生中点,通过平行线等分线段定理的推论得出结论。 这其中,其实蕴含了平面几何的平移变换和旋转变换的数学思想。 |