一题多解是培养人们开发思维的极好途径,不仅对课本习题可采用此法,对竞赛题也不例外,请看一道竞赛题的几种不同解法,也许对提高我们的解题能力有所启发。 题目:计算1+2-3-4+5+6-7-8+9+10-11-12+…+2023+2023-2023+2023+2023-2023,最后结果是( ) (A)0 (B)-1 (C)2023 (D)-2023 (第十届“希望杯”初一培训题) 原题所给的参考答案为: 原式=1+(2-3-4+5)+(6-7-8+9)+(10-11-12+13)+…+(2023-2023+2023)+(2023)-2023=1+0+0+…+0-1-2023=-2023,故选(D)。 以上解法我们权且称作不均匀分组法。下面我们再给出几种不同解法。 解法一:观察法 ∵1+2-3-4=-4,1+2-3-4+5+6-7-8=-8,1+2-3-4+5+6-7-8+9+10-11-12=-12,… 经观察知,每一“片断”的代数和均为参加运算的最后一个数,故原式=-2023,选(D)。 解法二:小段均匀分组法 将式中每连续4个数分为一组,则有1+2-3-4=-4,5+6-7-8=-4,9+10-11-12=-4,…,∴2023÷4=500(组),故原式=500×(-4)=-2023. 解法三:凑零法 ∵-0+1+2-3=0,-4+5+6-7=0,…,-2023+2023+2023=0,∴原式=0+0+…+0-2023=-2023. 解法四:大段均匀分组法 按个位数0,1,2,3,…,8,9分为一大组,进行计算,则有 1+2-3-4+5+6-7-8+9=-0+1+2-3-4+5+6-7-8+9=1, 又10-11-12+13+14-15-16+17+18-19=-1 而-20+21+22-23-24+25+26-27-28+29=1 另外:30-31-32+33+34-35-36+37+38-39=-1,… 2023-2023+2023+2023-2023+2023+2023=-1. ∴原式=1-1+1-1+…+1-1-2023=0+0+…+0-2023=-2023. 解法五:添数法 每一个方框数之和为-2,而这样的方框有2023个,将每个方框中添加2,故有:原式+2023=0. ∴原式=-2023. 解法六:隔数相加法 在1+2-3-4+5+6-7-8+9+10-11-12+…+2023+2023-2023+2023+2023-2023中 隔数相加:如1-3=-2,2-4=-2,5-7=-2,…,这样的数对共有2023对,∴原式=-2×2023=-2023. 解法七:倒序错位相加法 令1+2-3-4+5+6-7-8+…+2023+2023-2023=T ∴有1+2-3-4+5+6-7-8+…+2023+2023-2023 故2T=3-2023+3=-2023,∴T=-2023. 以上几种解法各有千秋。繁简程度各异,仅体现了不同的思维方式,也展现了思维的广阔性和灵活性,有助于我们拓展视野。 |