人人终身学习知识网~是各类综合知识资源信息分享,提升综合素质与提高知识技能的终身学习网络平台

 找回密码
 立即注册

QQ登录

只需一步,快速开始

微信登录

微信扫码,快速开始

北京名校小升初真题汇总之工程数论篇(答案) 标签:工程问题

[复制链接]

工程问题

1 (三帆中学考题)

【解】: 3人被抽走后,剩下15人都多植树1棵,这样每小时都总共多植树15棵树,因为还是按期完成任务,所以这15棵树肯定是3人原来要种的,所以原来每人要植树15÷3=5棵。

2 (首师附中考题)

【解】:甲10天+乙20天=1;甲15天+乙12天=1,所以工作量:甲10天+乙20天=甲15天+乙12天,等式两端消去相等的工作量得:乙8天=甲5天,即乙工作8天的工作量让甲去做只要5天就能完成,那么整个工程全让甲做要15+12× =22.5天。现在乙了4天就相当于甲做了4× =2.5天,所以甲还要做20天。

3 (人大附中考题)

【解】:甲的工作效率= ,乙的工作效率= ,合作工效= ,甲乙交替工作相当于甲乙一起合作1小时,这样1÷ = =8… ,所以合作了8小时,这样还剩下 就是甲做的,所以甲还要做 ÷ =3 ,所以两人总共作了8+8+ 小时。

4 (西城四中考题)

【解】:方法一:(编者推荐用法)甲、乙、丙60分钟可以灌满,甲、乙两管80分钟可以灌满,乙、丙两根水管75分钟可以灌满;这样我们先找出60、80、75的最小公倍数,即2023,所以我们假设水池总共有2023份,这样甲、乙、丙每分钟灌2023÷60=20份,甲、乙每分钟灌2023÷80=15份,乙、丙每分钟灌2023÷75=16份,所以乙每分钟灌15+16-20=11份,这样乙单独灌水要2023÷11= 分钟。

方法二:设工作效率求解,省略。

5 (北大附中考题)

【解】:假设每个工人每小时做一份,这样总工程量=15×4×18=2023份,增加3人每天增加

1小时,那么需要的时间=2023÷(15+3)÷(4+1)=12天,所以提前6天完成。

数论篇一

1 (人大附中考题)

【解】:6

2 (101中学考题)

【解】:设原来数为ab,这样后来的数为a0b,把数字展开我们可得:100a+b=9×(10a+b),所以我们可以知道5a=4b,所以a=4,b=5,所以原来的两位数为45。

3 (人大附中考题)

甲、乙、丙代表互不相同的3个正整数,并且满足:甲×甲=乙+乙=丙×135.那么甲最小是____。

【解】:题中要求丙与135的乘积为甲的平方数,而且是个偶数(乙+乙),这样我们分解135=5×3×3×3,所以丙最小应该是2×2×5×3,所以甲最小是:2×3×3×5=90。

4 (人大附中考题)

【解】:八进制数是由除以8的余数得来的,不可能出现8,所以答案是D。

数论篇二

1 (清华附中考题)

【解】:处理成余数相同的,则888、518-7、666-10的余数相同,这样我们可以转化成同余问题。这样我们用总结的知识点可知:任意两数的差肯定余0。那么这个自然数是888-511=377的约数,又是888-656=232的约数,也是656-511=145的约数,因此就是377、232、145的公约数,所以这个自然数是29。

2 (三帆中学考题)

【解】:这样我们用总结的知识点可知:任意两数的差肯定余0。那么这个自然数是293-225=68的约数,又是225-140=85的约数,因此就是68、85的公约数,所以这个自然数是17。所以2023除以17余1

3 (人大附中考题)

【解】:“加上3后被3除余1”其实原数还是余1,同理这个两位数除以4、5都余1,这样,这个数就是[3、4、5]+1=60+1=61。

4 (101中学考题)

【解】:设后面这个两位数为ab,前面数字和为26除以3余2,所以补上的两位数数字和要除以3余2。同理要满足除以4余2;八位数中奇数位数字和为(2+7+3+a),偶数位数字和为(5+6+3+b)这样要求a=b+2,所以满足条件的只有86

5 (实验中学考题)

【解】1、[ ]=999个。

2、对于每一个三位数×××来说,在1 ×××、2×××、3 ×××和4×××这4个数中恰好有1个数的数字和能被4整除.所以从2023到2023这2023个数中,恰有2023个数的数字和能被4整除.

同样道理,我们可以知道600到999这400个数中恰有100个数的数字和能被4整除,从200到599这400个数中恰有100个数的数字和能被4整除.

现在只剩下10到199这190个数了.我们还用一样的办法.160到199这40个数中,120到159这40个数中,60到88这40个数中,以及20到59这40个数中分别有10个数的数字和能被4整除.而10到19,以及100到1t9中则只有13、17、103、107、112和116这6个数的数字和能被4整除.

所以从10到2023这2023个自然数中,其数字和能被4整除的数有2023+100×2+10×4+6=2023个.

[方法二]:

解:第一个能数字和能够被4整除的数是13,最后一个是2023,这中间每4位数就有一个能够满足条件,所以2023-13=2023,2023÷4=2023(个),而第一个也是能够满足的,所以正确答案是

2023+1=2023(人)或者就直接用2023-12=2023,用2023÷4=2023(个)

[拓 展]:1到2023的数码和是等于多少?

回复

使用道具 举报

小黑屋/人人终身学习知识网~是各类综合知识资源信息分享,提升综合素质与提高知识技能的终身学习网络平台

Powered by 5wangxiao

© 2007-2021 5wangxiao.Com Inc.

快速回复 返回顶部 返回列表