优学奥数难题以小学4-6年级的杯赛题为来源,试题挑选、答案详解准确性均经优学奥数名师鉴证;根据对历年杯赛真题的研究、总结及归纳,结合了赛题中的高频考点、难点、易错点、以及最近几年命题趋势所得;适合志在杯赛中夺取佳绩的学生。 40名学生参加义务植树活动,任务是:挖树坑,运树苗。这40名学生可分为甲、乙、丙三类,每类学生的劳动效率如右表所示。如果他们的任务是:挖树坑30个,运树苗不限,那么应如何安排人员才能既完成挖树坑的任务,又使树苗运得最多? 选题编辑:沈丽娟老师 毕业于华南师范大学数学与应用数学 (师范)专业,优学专职教师,中国数学奥林匹克二级教练员。在大学期间修读“竞赛数学”,成绩优异。对中小学奥数知识体系了解透彻,重难点把握到位。辅导的学生中多人获得“华杯赛”奖项。 教学特色: 1、语言生动幽默,十分有亲和力,易于学生接受。2、拥有很强的数学功底,同时善于解题和总结。3、上课思路清晰、讲解透彻,注重知识及思维的发生、发展过程,深入浅出进行引导,善于联系学生的生活经验为学生构建形象生动的情境,帮助学生理解题目。 老师教你解难题-试题详解
设甲、乙、丙三类学生中挖树坑的分别有x人、y人、z人,其中 0≤x≤15,0≤y≤15,0≤z≤10, 则甲、乙、丙三类学生中运树苗的分别有(15-x)人、(15-y)人、(10-z)人。要完成挖树坑的任务,应有 2x+1.2y+0.8z=30, ① 即 20x≥300-12y-8z. ② 在完成挖树坑任务的同时,运树苗的数量为 P=20(15-x)+10(15-y)+7(10-2) =520-20x-lOy-7z。 ③ 将②代人③,得 p=520-300+12y+8z-lOy-7z =220+2y+z。 当y=15,z=10时,P有最大值, =220+2×15+10=260(棵)。 将y=15,z=lO代入①,解得 x=2,符合题意。 因此,当甲、乙、丙三类学生中挖树坑的分别有2人、15人、10人时,可完成挖树坑的任务,且使树苗运得最多,最多为260棵。 |