人人终身学习知识网~是各类综合知识资源信息分享,提升综合素质与提高知识技能的终身学习网络平台

 找回密码
 立即注册

QQ登录

只需一步,快速开始

微信登录

微信扫码,快速开始

五年级奥数试题及答案:数的整除问题 标签:数的整除问题

[复制链接]

试问,能否将由1至100这100个自然数排列在圆周上,使得在任何5个相连的数中,都至少有两个数可被3整除?如果回答:“可以”,则只要举出一种排法;如果回答:“不能”,则需给出说明.

考点:数的整除特征.

分析:根据题意,可采用假设的方法进行分析,100个自然数任意的5个数相连,可以分成20个组,使得在任何5个相连的数中,都至少有两个数可被3整除,那么会有40个数是3的倍数,事实上在1至100的自然数中只有33个是3倍数,所以不能.

解答:假设能够按照题目要求在圆周上排列所述的100个数,

按所排列顺序将它们每5个分为一组,可得20组,

其中每两组都没有共同的数,于是,在每一组的5个数中都至少有两个数是3的倍数.

从而一共会有不少于40个数是3的倍数.但事实上在1至100的这100个自然数中只有33个数是3的倍数,

导致矛盾,所以不能.

答:不能.

点评:此题主要考查的是在1至100的100个自然数中能被3整除的有多少.

回复

使用道具 举报

小黑屋/人人终身学习知识网~是各类综合知识资源信息分享,提升综合素质与提高知识技能的终身学习网络平台

Powered by 5wangxiao

© 2007-2021 5wangxiao.Com Inc.

快速回复 返回顶部 返回列表