例1 哥哥和妹妹分糖。哥哥拿1块,妹妹拿2块;哥哥拿3块,妹妹拿4块;接着哥哥拿5块、7块、9块、11块、13块、15块,妹妹拿6块、8块、10块、12块、14块、16块。你说谁拿得多,多几块? 解:方法1:先算哥哥共拿了多少块? 再算妹妹共拿了多少块? 72-64=8(块) 方法2:这样想:先算每次妹妹比哥哥多拿几块,再算共多拿了多少块。 (2-1)+(4-3)+(6-5)+(8-7)+(10-9)+(12-11)+(14-13)+(16-15) =1+1+1+1+1+1+1+1 =8(块) 可以看出方法2要比方法1巧妙! 平时注意积累,记住一些有趣的和重要的运算结果,非常有助于速算。比如,请同学记住几个自然数相加之和: 1+2=3 1+2+3=6 1+2+3+4=10 1+2+3+4+5=15 1+2+3+4+5+6=21 1+2+3+4+5+6+7=28 1+2+3+4+5+6+7+8=36 1+2+3+4+5+6+7+8+9=45 1+2+3+4+5+6+7+8+9+10=55 例2 星期天,小明家来了9名小客人。小明拿出一包糖,里面有54块。小明说:“咱们一共10个人,每人都要分到糖,但每人分到的糖块数不能一样多,谁会分?”结果大家都无法分,你能帮他们分好吗? 解:按小明提的要求确实无法分。 因为要使得每个人都得到糖,糖块数人人不等,需要糖块数最少的分法是:第一人分到1块,第二人分到2块,…第十人分到10块。但是,这种分法共需要有 1+2+3+4+5+6+7+8+9+10=55(块) 而小明这包糖一共才54块,所以按这种方法无法分。如果改变一下,有一人少得1块糖,比如说,应该得10块糖的小朋友只分到了9块,但是这样一来,他就和另一个先分得9块糖的那个小朋友一样多了,这又不符合小明提出“每人分到的糖块数不能一样多”的要求。 (注意:“按小明提的要求无法分”就是此题的答案。在数学上“无解”也叫问题的答案。) 例3 时钟1点钟敲1下,2点钟敲2下,3点钟敲3下,……照这样敲下去,从1点到12点,这12个小时时钟共敲了几下? 解:这是一道美国小学奥林匹克试题,要求在3分钟内就要得出答案。 方法1:凑十法 方法2:如果能记住从1到10前十个自然数之和是55,计算会更快。 (1+2+3+4+5+6+7+8+9+10)+11+12 =55+11+12=78(下) |