人人终身学习知识网~是各类综合知识资源信息分享,提升综合素质与提高知识技能的终身学习网络平台

 找回密码
 立即注册

QQ登录

只需一步,快速开始

微信登录

微信扫码,快速开始

杂题之数阵图练习19 标签:数阵图与数字谜

[复制链接]

在右图所示立方体的八个顶点上标出1~9中的八个,使得每个面上四个顶点所标数字之和都等于k,并且k不能被未标出的数整除。

分析与解:设未被标出的数为a,则被标出的八个数之和为1+2+…+9-a=45-a。由于每个顶点都属于三个面,所以六个面的所有顶点数字之和为

6k=3×(45-a),

2k=45-a。

2k是偶数,45-a也应是偶数,所以a必为奇数。

若a=1,则k=22;

若a=3,则k=21;

若a=5,则k=20;

若a=7,则k=19;

若a=9,则k=18。

因为k不能被a整除,所以只有a=7,k=19符合条件。

由于每个面上四个顶点上的数字之和等于19,所以与9在一个面上的另外三个顶点数之和应等于10。在1,2,3,4,5,6,8中,三个数之和等于10的有三组:

10=1+3+6

=1+4+5

=2+3+5,

将这三组数填入9所在的三个面上,可得右图的填法。

回复

使用道具 举报

小黑屋/人人终身学习知识网~是各类综合知识资源信息分享,提升综合素质与提高知识技能的终身学习网络平台

Powered by 5wangxiao

© 2007-2021 5wangxiao.Com Inc.

快速回复 返回顶部 返回列表