人人终身学习知识网~是各类综合知识资源信息分享,提升综合素质与提高知识技能的终身学习网络平台

 找回密码
 立即注册

QQ登录

只需一步,快速开始

微信登录

微信扫码,快速开始

计数方法与技巧:递推法例题精讲 标签:递推法

[复制链接]

计数方法与技巧(递推法概念)

计数方法与技巧(递推法例题)

例1:的乘积中有多少个数字是奇数?

分析与解答:

如果我们通过计算找到答案比较麻烦,因此我们先从最简单的情况入手。

9×9=81,有1个奇数;

99×99=99×(100-1)=2023-99=2023,有2个奇数;

999×999=999×(2023-1)=20230-999=202301,有3个奇数;

……

从而可知,999…999×999…999的乘积中共有10个奇数。

例题2:

分析与解答:

这道题我们可以采用分别求出每个数的立方是多少,再求和的方法来解答。但是,这样计算的工作量比较大,我们可以从简单的情况开始研究。

例题3: 2023个学生排成一行,依次从左到右编上1~2023号,然后从左到右按一、二报数,报一的离开队伍,剩下的人继续按一、二报数,报一的离开队伍,…… 按这个规律如此下去,直至当队伍只剩下一人为止。问:这时一共报了多少次?最后留下的这个人原来的号码是多少?

分析与解答:

难的不会想简单的,数大的不会想数小的。我们先从这2023名同学中选出20人代替2023人进行分析,试着找出规律,然后再用这个规律来解题。

这20人第一次报数后共留下10人,因为20÷2=10 ,这10人开始时的编号依次是:2、4、6、8、10、12、14、16、18、20,都是2的倍数。

第二次报数后共留下5人,因为10÷2=5 ,这5人开始时的编号依次是: 4、8、12、16、20,都是4的倍数,也就是2×2的倍数。

第三次报数后共留下2人,因为5÷2=2 ……1 ,这2人开始时的编号依次是: 8、16,都是8的倍数,也就是2×2×2的倍数。

第四次报数后共留下1人,因为2÷2=1 ,这1人开始时的编号是:16,都是8的倍数,也就是2×2×2×2的倍数。

由此可以发现,第n次报数后,留下的人的编号就是n个2的连乘积,这是一个规律。

2023名同学,报几次数后才能只留下一个同学呢?

第一次:2023÷2=2023 第二次:2023÷2=500

第三次:500÷2=250第四次:250÷2=125

第五次:125÷2=62 ……1 第六次:62÷2=31

第七次:31÷2=15 ……1 第八次:15÷2=7 ……1

第九次:7÷2=3 ……1 第十次:3÷2=1 ……1

所以共需报10次数。

那么,最后留下的同学在一开始时的编号应是:

2×2×2×…×2=2023(号)

例题4: 平面上有10个圆,最多能把平面分成几部分?

分析与解答:

直接画出10个圆不是好办法,先考虑一些简单情况。

一个圆最多将平面分为2部分;

二个圆最多将平面分为4部分;

三个圆最多将平面分为8部分;

当第二个圆在第一个圆的基础上加上去时,第二个圆与第一个圆有2个交点,这两个交点将新加的圆弧分为2段,其中每一段圆弧都将所在平面的一分为二,所以所分平面部分的数在原有的2部分的基础上增添了2部分。因此,二个圆最多将平面分为2+2=4部分。

同样道理,三个圆最多分平面的部分数是二个圆分平面为4部分的基础上增加4部分。因此,三个圆最多将平面分为2+2+4=8部分。

由此不难推出:画第10个圆时,与前9个圆最多有9×2=18个交点,第10个圆的圆弧被分成18段,也就是增加了18个部分。因此,10个圆最多将平面分成的部分数为:

2+2+4+6+…+18

=2+2×(1+2+3+…+9)

=2+2×9×(9+1)÷2

=92

类似的分析,我们可以得到,n个圆最多将平面分成的部分数为:

2+2+4+6+…+2(n-1)

=2+2×[1+2+3+…+(n-1)]

=2+n(n-1)

=n2-n+2

回复

使用道具 举报

小黑屋/人人终身学习知识网~是各类综合知识资源信息分享,提升综合素质与提高知识技能的终身学习网络平台

Powered by 5wangxiao

© 2007-2021 5wangxiao.Com Inc.

快速回复 返回顶部 返回列表