人人终身学习知识网~是各类综合知识资源信息分享,提升综合素质与提高知识技能的终身学习网络平台

 找回密码
 立即注册

QQ登录

只需一步,快速开始

微信登录

微信扫码,快速开始

几何的五大模型练习14 标签:几何的五大模型

[复制链接]

几何的五大模型练习14

一个正方体形状的木块,棱长2分米。沿水平方向将它锯成3片,每片又锯成4条,每条又锯成5小块,共得到大大小小的长方体60块(如图30)。这60块长方体表面积的和是多少平方分米?

答案详解见下页

分析与解 解答这道题的最直接的想法是将这大大小小的60个长方体形状的小木块的表面积分别计算出来,然后再求出总和,这样做是可以的,但计算极为复杂。因此解答这题时,应从整体出发,这样,问题就简单多了。

这个正方体形木块在未锯成60个长方体形状的小木块前,共有6个面,每个面的面积是2×2=4平方分米,6个面共24平方分米。不管后来锯成多少块小长方体,这6个面的24平方分米的面积总是后来的小长方体的表面积的一部分。

现在我们来考虑将木块每锯一刀的情况。显然,每锯一刀就会增加2个4平方分米的表面积,根据题意,现在一共锯了2+3+4=9刀,共增加了18个4平方分米的表面积。

因此,这60块大大小小的长方体的表面积总和是

24+4×18=96(平方分米)

或列式为

2×2×[6+(2+3+4)×2]

=4×[6+18]

=4×24

=96(平方分米)

答:60块长方体表面积的和是96平方分米。

回复

使用道具 举报

小黑屋/人人终身学习知识网~是各类综合知识资源信息分享,提升综合素质与提高知识技能的终身学习网络平台

Powered by 5wangxiao

© 2007-2021 5wangxiao.Com Inc.

快速回复 返回顶部 返回列表