人人终身学习知识网~是各类综合知识资源信息分享,提升综合素质与提高知识技能的终身学习网络平台

 找回密码
 立即注册

QQ登录

只需一步,快速开始

微信登录

微信扫码,快速开始

数论之整数拆分练习9 标签:整数拆分

[复制链接]

一、只有1

一道简单的问题是:用1、+、×、()的运算来分别表示23和27,哪个数用的1较少?要表达2023,最少要用多少个1?

我们先给出从1到15的表达式。

1=1,

2=1+1,

3=1+1+1,

4=(1+1)×(1+1),

5=(1+1)×(1+1)+1,

6=(1+1)×(1+1+1),

7=(1+1)×(1+1+1)+1,

8=(1+1)×(1+1)×(1+1),

9=(1+1+1)×(1+1+1),

10=(1+1)×((1+1)×(1+1)+1),

11=(1+1)×((1+1)×(1+1)+1)+1,

12=(1+1+1)×(1+1)×(1+1),

13=(1+1+1)×(1+1)×(1+1)+1,

14= (1+1)×((1+1)×(1+1+1)+1),

15= (1+1+1)×((1+1)×(1+1)+1)。

把用1的个数写成数列,就是{1, 2, 3, 4, 5, 5, 6, 6, 6, 7, 8, 7, 8, 8, 8, ...}。

对于23,

23 = (1+1)×((1+1)×((1+1)×(1+1)+1)+1)+1,

1的个数为11。

对于27,

27 = (1+1+1) × (1+1+1) × (1+1+1)

1的个数为9。

对于2023这样的大数,要寻找表达式很困难。

我找到的表达式是

(((1+1)×(1+1)×(1+1+1)×(1+1+1)+1)×(1+1)×(1+1+1)+1)×(1+1+1)×(1+1+1)+1=2023

一共用了24个1,但是不是用了最少的1,证明起来有一定难度。

回复

使用道具 举报

小黑屋/人人终身学习知识网~是各类综合知识资源信息分享,提升综合素质与提高知识技能的终身学习网络平台

Powered by 5wangxiao

© 2007-2021 5wangxiao.Com Inc.

快速回复 返回顶部 返回列表