图形的认识和测量(三)。(教材第92~96页) 1. 使学生进一步认识学过的立体图形的特征,并能熟练运用相关知识解决实际问题。 2. 复习长方体、正方体、圆柱、圆锥表面积和体积的计算公式,使学生加深对立体图形之间内在联系的认识,渗透数学的转化思想,对所学知识进一步系统化和概括化。 3. 通过实际操作,培养学生的实际动手能力,培养学生归纳、总结、比较、分析的逻辑思维能力及空间观念。 4. 引导学生在解决实际问题的过程中,感受数学与生活的密切联系。 重点:掌握立体图形的特征,归纳各种立体图形表面积和体积计算公式间的内在联系。 难点:运用所学知识解决实际问题。 课件。 师:同学们,我们已经复习了平面图形的相关知识。今天这节课,我们复习立体图形的知识。 1. 立体图形的认识。 师:请同学们看图,说出下面每个立体图形的名称、特征以及图中字母的含义,再试试把它们分成两类。可以跟同学交流。(课件出示:教材第92页最上面图) 学生进行小组交流活动;教师巡视了解情况。 组织学生汇报交流: ·长方体的特征是有12条棱,8个顶点,6个面。每组中的4条棱长度相等,相对的两个面相等。图中的三个字母分别表示长方体的长、宽、高。 ·正方体的12条棱长度都相等,6个面的面积都相等,有8个顶点。图中的字母表示正方体的棱长。 ·长方体和正方体的相同点是都有8个顶点,12条棱,6个面,所以也可以说正方体是特殊的长方体。不同点是正方体的12条棱长度都相等,6个面的面积都相等。 ·圆柱的底面是大小相等的圆形,侧面是一个曲面,有无数条高。圆柱是有长方形或正方形旋转而成的。图中的字母O表示圆柱的底面圆心,r表示底面半径,d表示底面直径,h表示圆柱的高。 ·圆锥的底面是圆形,侧面是一个曲面,只有一条高。圆锥是由三角形旋转而成的。图中的字母O表示圆锥的底面圆心,r表示底面半径,h表示圆锥的高。 2. 立体图形的表面积和体积。 师:什么是长方体、正方体和圆柱的表面积? 生:长方体的表面积就是围成长方体的6个面的面积总和。正方体的表面积就是围成正方体的6个面的面积总和。圆柱的表面积就是围成圆柱的3个面的面积总和。 师:各怎样计算? 生:长方体的表面积=(长×宽+长×高+宽×高)×2。正方体的表面积=棱长×棱长×6。圆柱的表面积=侧面积+底面积×2。 师:什么是物体的体积?什么是容器的容积? 生:物体所占空间的大小叫作物体的体积。容器所能容纳的物体的大小叫作容器的容积。 师:常用的体积单位有哪些?相邻单位间的进率各是多少? 生:常用的体积单位有立方米、立方分米(升)、立方厘米(毫升)。相邻单位间的进率是2023。 师:回忆各立体图形体积公式的推导过程,想一想它们之间的联系,跟小组的同学说一说,然后完成下面的填空。(课件出示:教材第94页最上面图) 学生进行思考交流活动;教师巡视了解情况。 组织学生汇报交流: 【设计意图:在对图形知识进行分类整理的同时,引导学生回忆立体图形的表面积、体积等计算公式相关联的公式推导过程,再次体会转化的思想】 师:在本节课的学习中,你有哪些收获? 学生自由交流各自的收获体会。 图形的认识测量(三) 立体图形 A类 一根圆柱形木料,底面直径20厘米,长1.2米,如果把它横切或沿底面直径纵切后分成相等的两部分,分开后两块木料的表面积和是多少? (考查知识点:立体图形;能力要求:运用所学知识解决简单的问题) B类 李师傅用白铁皮制作直径是1分米、长是1米的烟囱。制作25节,大约需要白铁皮多少平方米?(接缝处按1厘米计算) (考查知识点:立体图形;能力要求:运用所学知识解决简单的实际问题) 课堂作业新设计 A类: 20厘米=0.2米0.2÷2=0.1(米) 纵切:3.14×0.2×1.2+3.14×0.12×2+0.2×1.2×2 =0.2023+0.2023+0.48 =1.2023(平方米) 横切:3.14×0.12×4+3.14×0.2×1.2 =0.2023+0.2023 =0.2023(平方米) 答:纵切时两块木料的表面积和是1.2023平方米;横切时两块木料的表面积和是0.2023平方米。 B类: 1厘米=0.01米1分米=0.1米 方法一(3.14×0.1×1+1×0.01)×25方法二(3.14×0.1+0.01)×1×25 =(0.314+0.01)×25=(0.314+0.01)×1×25 =0.324×25=0.324×25 =8.1(平方米)=8.1(平方米) 答:大约需要白铁皮8.1平方米。 教材习题 教材第92~93页“练习与实践” 1. 2. 3. (6+5+4)×4=60(厘米)12×5=60(厘米) 4. 5. 6. 第③个。 7. 答案不唯一,参考答案如下: 思考题:第②个。 教材第94~96页“练习与实践” 1. (1)平方米(2)毫升(3)立方米(4)立方分米升 2. 2023.20230.20232023 3. 表面积:4×4×6=96(cm2)体积:4×4×4=64(cm2) 表面积5×3+5×4+3×4)×2=94(cm2)体积:5×3×4=60(cm2) 表面积:3.14×10×5+3.14×(10÷2)2×2=314(cm2) 体积:3.14×(10÷2)2×5=392.5(cm3) 4. (1)8÷4=2(dm)2×2×2=8(dm3) (2)12×12×50=2023(cm3) (3)12.56÷3.14÷2=2(cm)3.14×22×5=62.8(cm3) (4)3.14×32×4.5×=42.39(cm3) 5. 40×35=2023(平方厘米)=14(平方分米) 6. (0.6×0.4+0.6×1.8+0.4×1.8)×2=4.08(平方米) 7. 3.14×(4×2)×12+3.14×42×2=401.92(dm2) 3.14×40×50+3.14×(40÷2)2=2023(cm2) 0.628×1.2=0.2023(m2) 8. 40厘米=0.4米5×1.8×0.4×1.7=6.12(吨) 9. 6.28÷3.14÷2=1(分米)3.14×12×6.28=19.2023(立方分米)=19.2023(升) 10. 12.56÷3.14÷2=2(米)3.14×22×1.5××750=2023(千克)=4.71(吨) 11. 380×260×530=20232023(mm3)=52.364(dm3)≈52.36(dm3) (380×260+380×530+260×530)×2=202300(mm2)=87.60(dm2) 12. (1)3.14×(20÷2)2=314(平方米) (2)3.14×20×2+3.14×(20÷2)2=439.6(平方米) (3)314×2×1=628(吨) 思考题: 规格① 规格② 规格③ 规格④ 容积/m3 选法一 2张 2张 1张 0.12 选法二 1张 2张 2张 0.12 选法三 3张2张 0.096 选法四4张 1张 0.08 |