人人终身学习知识网~是各类综合知识资源信息分享,提升综合素质与提高知识技能的终身学习网络平台

 找回密码
 立即注册

QQ登录

只需一步,快速开始

微信登录

微信扫码,快速开始

[题型归纳] 中考数学冲刺试卷练习(附答案)

[复制链接]

中考复习最忌心浮气躁,急于求成。指导复习的教师,应给学生一种乐观、镇定、自信的精神面貌。要扎扎实实地复习,一步一步地前进,下文为大家准备了2023年中考数学冲刺试卷练习。

A级基础题

1.(2023年新疆)等腰三角形的两边长分别为3和6,则这个等腰三角形的周长为()

A.12 B.15 C.12或15 D.18

2.(2023年湖北武汉)在△ABC中,AB=AC,∠A=36°,BD是AC边上的高,则∠DBC的度数是()

A.18° B.24° C.30° D.36°

3.(2023年广东深圳)如图4­2­37,在△ABC中,AC=AD=BD,∠DAC=80°,则∠B的度数是()

A.40° B.35° C.25° D.20°

4.(2023年山东德州)如图4­2­38,AB∥CD,点E在BC上,且CD=CE,∠D=74°,则∠B的度数为()

A. 68° B.32° C. 22° D.16°

5.(2023年山东滨州)在△ABC中,∠C=90°,AB=7,BC=5,则边AC的长为________.

6.(2023年山东泰安)如图4­2­39,在Rt△ABC中,∠ACB=90°,AB的垂直平分线DE交AC于点E,交BC的延长线于点F,若∠F=30°,DE=1,则BE的长是________.

7.(2023年吉林)如图4­2­40,在Rt△ABC中,∠ACB=90°,AC=3,BC=4,以点A为圆心,AC长为半径画弧,交AB于点D,则BD=________.

8.(2023年江苏无锡)如图4­2­41,在Rt△ABC中,∠ACB=90°,D,E,F分别是AB,BC,CA的中点,若CD=5 cm,则EF=________ cm.

9.(2023年福建莆田)图4­2­42是一株美丽的勾股树,其中所有的四边形都是正方形,所有的三角形都是直角三角形,若正方形A,B,C,D的面积分别为2,5,1,2.则最大的正方形E的面积是________.

10.(2023年湖北荆门)如图4­2­43(1),在△ABC中,AB=AC,点D是BC的中点,点E在AD上.

(1)求证:BE=CE;

(2)若BE的延长线交AC于点F,且BF⊥AC,垂足为F,如图4­2­43(2),∠BAC=45°,原题设其他条件不变.求证:△AEF≌△BCF.

B级中等题

11.(2023年浙江绍兴)所示的钢架中,焊上等长的13根钢条来加固钢架.若AP1=P1P2=P2P3=…=P13P14=P14A,则∠A的度数是__________.

12.(2023年湖北襄阳)在一张直角三角形纸片中,分别沿两直角边上一点与斜边中点的连线剪去两个三角形,得到如图4­2­45所示的直角梯形,则原直角三角形纸片的斜边长是______________.

13.(2023年辽宁沈阳)如图4­2­46,在△ABC中,AB=BC,BE⊥AC于点E,AD⊥BC于点D,∠BAD=45°,AD与BE交于点F,连接CF.

(1)求证:BF=2AE;

(2)若CD=2,求AD的长.

C级拔尖题

14.(2023年江西)某数学活动小组在作三角形的拓展图形,研究其性质时,经历了如下过程:

[操作发现]

在等腰三角形ABC中,AB=AC,分别以AB和AC为斜边,向△ABC的外侧作等腰直角三角形,如图4­2­47(1),其中DF⊥AB于点F,EG⊥AC于点G,M是BC的中点,连接MD和ME,则下列结论:①AF=AG=12AB;②MD=ME;③整个图形是轴对称图形;④∠DAB=∠DMB.其中正确的是____________(填序号即可).

[数学思考]

在任意△ABC中,分别以AB和AC为斜边,向△ABC的外侧作等腰直角三角形,如图4­2­47(2),M是BC的中点,连接MD和ME,则MD和ME具有怎样的数量和位置关系?请给出证明过程.

[类比探索]

在任意△ABC中,仍分别以AB和AC为斜边,向△ABC的内侧作等腰直角三角形,如图4­2­47(3),M是BC的中点,连接MD和ME,试判断△MED的形状.

答:____________________.

(1) (2) (3)

等腰三角形与直角三角形

1.B2.A3.C4.B

5.2 66.27.28.59.10

10.证明:(1)∵AB=AC,D是BC的中点,

∴∠BAE=∠CAE.

在△ABE和△ACE中,AB=AC,∠BAE=∠CAE,AE=AE,

∴△ABE≌△ACE(SAS).

∴BE=CE.

(2)∵∠BAC=45°,BF⊥AF,

∴△ABF为等腰直角三角形.∴AF=BF.

由(1)知AD⊥BC,∴∠EAF=∠CBF.

在△AEF和△BCF中,AF=BF,∠AFE=∠BFC=90°,∠EAF=∠CBF,

∴△AEF≌△BCF.

11.12°解析:设∠A=x.∵AP1=P1P2=P2P3=…=P13P14=P14A,∴∠A=∠AP2P1=∠AP13P14=x.∴∠P2P1P3=∠P13P14P12=2x,∴∠P3P2P4=∠P12P13P11=3x,…,∠P7P6P8=∠P8P9P7=7x,∴∠AP7P8=7x,∠AP8P7=7x,在△AP7P8中,∠A+∠AP7P8+∠AP8P7=180°,即x+7x+7x=180°,∴x=12°.即∠A=12°. X Kb 1. C om

12.2 13或6 2解析:如图17(1),以点B为直角顶点,BD为斜边上的中线.在Rt△ABD中,可得BD=13,∴原直角三角形纸片的斜边EF的长是2 13;如图17(2),以点A为直角顶点,AC为斜边上的中线,在Rt△ABC中,可得AC=3 2,∴原直角三角形纸片的斜边EF的长是6 2.

(1) (2)

图17

13.(1)证明:∵AD⊥BC,∠BAD=45°,

∴∠ABD=∠BAD=45°.∴AD=BD.

∵AD⊥BC,BE⊥AC,

∴∠CAD+∠ACD=90°,∠CBE+∠ACD=90°,

∴∠CAD=∠CBE.

又∵∠CDA=∠BDF=90°,

∴△ADC≌△BDF(ASA).∴AC=BF.

∵AB=BC,BE⊥AC,∴AE=EC,即AC=2AE,

∴BF=2AE.

(2)解:∵△ADC≌△BDF,∴DF=CD=2.

∴在Rt△CDF中,CF=DF2+CD2=2.

∵BE⊥AC,AE=EC,∴AF=FC=2.

∴AD=AF+DF=2+2.

14.解:[操作发现]①②③④

[数学思考]MD=ME,MD⊥ME.证明如下:

图18

①MD=ME.

如图18,分别取AB,AC的中点F,G,连接DF,MF,MG,EG,

∵M是BC的中点,

∴MF∥AC,MF=12AC.

又∵EG是等腰直角三角形AEC斜边上的中线,

∴EG⊥AC,且EG=12AC.

∴MF=EG.

同理可证DF=MG.

∵MF∥AC,

∴∠MFA+∠BAC=180°.

同理可得∠MGA+∠BAC=180°.

∴∠MFA=∠MGA.

又∵EG⊥AC,∴∠EGA=90°.

同理可得∠DFA=90°.

∴∠MFA+∠DFA=∠MGA+∠EGA,

即∠DFM=∠MGE.又MF=EG,DF=MG,

∴△DFM≌△MGE(SAS).∴MD=ME.

②MD⊥ME.

如图18,设MD与AB交于点H,

∵AB∥MG,∴∠DHA=∠DMG.

又∵∠DHA=∠FDM+∠DFH,

即∠DHA=∠FDM+90°.

∵∠DMG=∠DME+∠GME,∴∠DME=90°.

即MD⊥ME.

为大家推荐的中考数学冲刺试卷练习的内容,还满意吗?相信大家都会仔细阅读,加油哦!

回复

使用道具 举报

小黑屋/人人终身学习知识网~是各类综合知识资源信息分享,提升综合素质与提高知识技能的终身学习网络平台

Powered by 5wangxiao

© 2007-2021 5wangxiao.Com Inc.

快速回复 返回顶部 返回列表