1.难度:★★★★从6幅国画,4幅油画,2幅水彩画中选取两幅不同类型的画布置教室,问有几种选法? 2.难度:★★★★ 从1到100的所有自然数中,不含有数字4的自然数有多少个? 1.难度:★★★★从6幅国画,4幅油画,2幅水彩画中选取两幅不同类型的画布置教室,问有几种选法? 【解答】6×4=24种 6×2=12种 4×2=8种 24+12+8=44种 【小结】首先考虑从国画、油画、水彩画这三种画中选取两幅不同类型的画有三种情况,即可分三类,自然考虑到加法原理。当从国画、油画各选一幅有多少种选法时,利用的乘法原理。由此可知这是一道利用两个原理的综合题。关键是正确把握原理。 符合要求的选法可分三类: 设第一类为:国画、油画各一幅,可以想像成,第一步先在6张国画中选1张,第二步再在4张油画中选1张。由乘法原理有 6×4=24种选法。 第二类为:国画、水彩画各一幅,由乘法原理有 6×2=12种选法。 第三类为:油画、水彩画各一幅,由乘法原理有4×2=8种选法。 这三类是各自独立发生互不相干进行的。 因此,依加法原理,选取两幅不同类型的画布置教室的选法有 24+12+8=44种。 2.难度:★★★★ 从1到100的所有自然数中,不含有数字4的自然数有多少个? 【解答】从1到100的所有自然数可分为三大类,即一位数,两位数,三位数. 一位数中,不含4的有8个,它们是1、2、3、5、6、7、8、9; 两位数中,不含4的可以这样考虑:十位上,不含4的有l、2、3、5、6、7、8、9这八种情况.个位上,不含4的有0、1、2、3、5、6、7、8、9这九种情况,要确定一个两位数,可以先取十位数,再取个位数,应用乘法原理,这时共有8×9=72 个数不含4. 三位数只有100. 所以一共有8+8×9+1=81 个不含4的自然数. |