设计说明 “鸽巢原理”来源于一个基本的数学事实,但它又是一类抽象的数学问题,因此,本节课在教学设计上选择学生常见的、熟悉的事物作为教学素材,并创设学生熟悉的数学情境调动学生学习的积极性,降低学习难度。结合本节课内容的特点和学生的认知水平,本节课教学设计有如下特点: 1.趣味导入,体现直观演示的有效性,充分调动学生学习的积极性。 首先通过“抽扑克牌”游戏,使学生对隐藏在生活中的鸽巢问题有初步的认识,然后引导学生在实物演示的过程中深刻理解“把m个物体任意分放进n个鸽巢中(m>n,m和n是非0自然数),那么一定有一个鸽巢中至少放进了2个物体”等知识。 2.重视探究之后的归纳总结。 学生的探究活动增进了对新知的理解,但如果不把学生获得的信息及时地加以归纳整理,就会影响知识的形成,使学生的探究功亏一篑。因此在教学中,应及时地将学生获取的信息加以归纳、总结,形成规律,有益于提高学生的学习效率。 课前准备 教师准备PPT课件一副扑克牌 学生准备4支铅笔3个笔筒 教学过程 ⊙游戏导入 1.组织学生玩“抽扑克牌”游戏。 (1)准备一副扑克牌,取出大王、小王。 (2)选出5位同学,请他们任意抽取一张扑克牌并记在心里,把牌收好。 (3)教师猜测“在这5张扑克牌里,至少有2张是同一花色的。” (4)学生把扑克牌拿出来验证教师的猜测。 2.引入新课。(板书课题:鸽巢原理) 设计意图:通过“抽扑克牌”游戏,使学生初步体验从一副4种花色的扑克牌中任意抽取5张扑克牌,不管怎么抽,都至少有2张扑克牌是同一花色的,为新知的探究作铺垫。 ⊙探究新知 1.教学例1。 (1)出示题目:把4支铅笔放进3个笔筒中,有几种不同的放法? (2)探究放法。 ①自主摆放并汇报放法及发现。 预设 生1:我用数字表示放法:(4,0,0),(3,1,0),(2,2,0),(2,1,1)。 生2:我用式子表示放法:4=4+0+0,4=3+1+0,4=2+2+0,4=2+1+1。 生3:我用数的分解表示: 生4:我发现不管怎么放,总有一个笔筒里至少有2支铅笔。 ②直接摆放。 a.引导学生找到一种更为直接的方法,只摆一种情况就能得到上面的结论。 预设 生:可以采用平均分的方法。4÷3=1……1,每个笔筒中各放1支,剩下的1支无论放进哪个笔筒中,总有一个笔筒中至少有2支铅笔。 b.组织学生小组合作探究。 |