(1),(2),(3),(4) 当d≠0时,Sn是关于n的二次函数且常数项为0,{an}为等差数列,反之不能。 等差数列的前n项和的有关性质: (1),…成等差数列; (2){an}有2k项时,=kd; (3){an}有2k+1项时,S奇=(k+1)ak+1=(k+1)a平, S偶=kak+1=ka平,S奇:S偶=(k+1):k,S奇-S偶=ak+1=a平; 解决等差数列问题常用技巧: 1、等差数列中,已知5个元素:a1,an,n,d, S中的任意3个,便可求出其余2个,即知3求2。 为减少运算量,要注意设元的技巧,时间管理,如奇数个成等差,可设为…,a-2d,a-d,a,a+d,a+2d,…,偶数个成等差,可设为…,a-3d,a-d,a+d,a+3d,… 2、等差数列{an}中,(1)若ap=q,aq=p,则列方程组可得:d=-1,a1=p+q-1,ap+q=0,S=-(p+q); (2)当Sp=Sq时(p≠q),数形结合分析可得Sn中最大,Sp+q=0,此时公差d<0。 |