抛物线顶点坐标公式 y=ax²+bx+c(a≠0)的顶点坐标公式是(-b/2a,(4ac-b²)/4a) y=ax²+bx的顶点坐标是(-b/2a,-b²/4a) 相关结论 过抛物线y^2=2px(p>0)焦点F作倾斜角为θ的直线L,L与抛物线相交于A(x1,y1),B(x2,y2),有 ① x1*x2 = p^2/4 , y1*y2 = —P^2,要在直线过焦点时才能成立; ② 焦点弦长:|AB| = x1+x2+P = 2P/[(sinθ)^2]; ③ (1/|FA|)+(1/|FB|)= 2/P; ④若OA垂直OB则AB过定点M(2P,0); ⑤焦半径:|FP|=x+p/2 (抛物线上一点P到焦点F距离等于到准线L距离); ⑥弦长公式:AB=√(1+k^2)*│x2-x1│; ⑦△=b^2-4ac; ⑧由抛物线焦点到其切线的垂线距离,是焦点到切点的距离,与到顶点距离的比例中项; ⑨标准形式的抛物线在x0,y0点的切线就是:yy0=p(x+x0)。 ⑴△=b^2-4ac>0有两个实数根; ⑵△=b^2-4ac=0有两个一样的实数根; ⑶△=b^2-4ac<0没实数根。 |