关注立体几何的变化 传统教材与新课程标准在处理立体几何上有着明显的区别,所以如何进行立体几何的备考争议最多、迷茫最多,而这些焦点集中反映在点、线、面的位置关系上。首先我们要注意新旧教材的差异: (1)传统教材侧重于空间点、线、面的关系以及有关的定理公理和相应的推理证明。 新课程标准将上述内容进行淡化,对能力的要求变为“直观感知、操作确认、思辨论证”,“能运用已获得的结论证明一些空间位置关系的简单命题”。也就是说,新课程标准降低了推理与证明,将简单论证与数值计算有机结合在一起是考查的重点。 (2)文科数学在必修2中学习了空间直角坐标系,这可以认为是更倾向于立体几何的数值运算,而且是采用代数(建立空间直角坐标系)方法计算一些几何量(点到点的距离)。 在2023年的立体几何备考中应该注意以下几点: ①空间的点、线、面的位置关系要把握好尺度,重点在基本的线面平行与垂直上,不应该学习向量办法。 ②立体几何也有创新,广东2023年将立体几何与函数结合在一起、2023年体现三角函数在立体几何有关数值运算中的作用都是很好的尝试。 复习时要处理好的几个关系 1.基础与提高的关系 高考数学复习时,起点要适当降低,以符合自己的实际水平为主。回归基础知识,找到自己的不足,制订进一步训练的计划。对知识点进行拾遗补缺也是一种提高。提倡准备“错题本”,将每次训练的错误登记在册,时常提醒自己。回归教材复习的时候,要对照课本目录(资料目录)回忆和梳理知识,在自己头脑中应形成明晰的知识体系。对基本方法和技巧不能回忆出的,要及时补上。把重点放在掌握例题涵盖的知识以及解题方法上,选择一些针对性强的题目进行强化训练。 2.全面复习与重点复习的关系 在全面复习的基础上,针对自己的特点多做一些重点练习。首先是自己的弱点、软肋,其次是高考的主干内容,最好设立专题进行专项复习,可以把所做的试卷中的相关问题集中起来进行复习和整理,从中归纳和总结出基本的题型和方法。主干内容是:函数、数列、三角、不等式、立体几何、解析几何以及新增加的内容。 |