在学习一次函数的过程中,除了要掌握一次函数的图像,性质等,还应注意1,自变量的指数是1,2、一次项系数不能为零等,下文就一次函数有什么该注意事项进行梳理总结,希望能帮助大家。 函数的基本概念:一般地,在某一变化过程中,有两个变量x和y,如果给定一个X值,相应地就确定了唯一一个Y值与X对应,那么我们称Y是X的函数.其中X是自变量,Y是应变量,也就是说Y是X的函数。当x=a时,函数的值叫做当x=a时的函数值。 自变量x和因变量y有如下关系: y=kx(k为任意不为零实数) 或y=kx+b(k为任意不为零实数,b为任意实数) 则此时称y是x的一次函数。 特别的,当b=0时,y是x的正比例函数。即:y=kx(k为任意不为零实数) 正比例函数图像经过原点 定义域:自变量的取值范围,自变量的取值应使函数有意义;要与实际相符合。 一次函数图像 1.作法与图形:通过如下3个步骤 (1)列表[一般取两个点,根据两点确定一条直线]; (2)描点; (3)连线,可以作出一次函数的图像——一条直线。因此,作一次函数的图像只需知道2点,并连成直线即可。(通常找函数图像与x轴和y轴的交点) 2.性质:(1)在一次函数上的任意一点P(x,y),都满足等式:y=kx+b(k≠0)。(2)一次函数与y轴交点的坐标总是(0,b),与x轴总是交于(-b/k,0)正比例函数的图像都是过原点。 3.函数不是数,它是指某一变量过程中两个变量之间的关系。 4.k,b与函数图像所在象限: y=kx时(即b等于0,y与x成正比) 当k>0时,直线必通过一、三象限,y随x的增大而增大; 当k<0时,直线必通过二、四象限,y随x的增大而减小。 y=kx+b时: 当k>0,b>0,这时此函数的图象经过一,二,三象限。 当k>0,b<0,这时此函数的图象经过一,三,四象限。 当k<0 b="">0,这时此函数的图象经过一,二,四象限。 当k<0,b<0,这时此函数的图象经过二,三,四象限。 当b>0时,直线必通过一、二象限; 当b<0时,直线必通过三、四象限。 特别地,当b=0时,直线通过原点O(0,0)表示的是正比例函数的图像。 这时,当k>0时,直线只通过一、三象限,不会通过二、四象限。当k<0时,直线只通过二、四象限,不会通过一、三象限。 5、特殊位置关系 当平面直角坐标系中两直线平行时,其函数解析式中K值(即一次项系数)相等 当平面直角坐标系中两直线垂直时,其函数解析式中K值互为负倒数(即两个K值的乘积为-1) |