1.自变量的取值范围: 分式分母不为零,偶次根下负不行; 零次幂底数不为零,整式、奇次根全能行。 2.函数图象的移动规律: 若把一次函数的解析式写成y=k(x+0)+b, 二次函数的解析式写成y=a(x+h)2+k的形式, 则可用下面的口诀 左右平移在括号,上下平移在末稍,左正右负须牢记,上正下负错不了。 3.一次函数的图象与性质的口诀: 一次函数是直线,图象经过三象限; 正比例函数更简单,经过原点一直线; 两个系数k与b,作用之大莫小看,k是斜率定夹角,b与y轴来相见, k为正来右上斜,x增减y增减; k为负来左下展,变化规律正相反; k的绝对值越大,线离横轴就越远。 4.二次函数的图象与性质的口诀: 二次函数抛物线,图象对称是关键; 开口、顶点和交点,它们确定图象现; 开口、大小由a断,c与y轴来相见; b的符号较特别,符号与a相关联; 顶点位置先找见,y轴作为参考线; 左同右异中为0,牢记心中莫混乱; 顶点坐标最重要,一般式配方它就现; 横标即为对称轴,纵标函数最值见。 若求对称轴位置,符号反,一般、顶点、交点式,不同表达能互换。 5.反比例函数的图象与性质的口诀: 反比例函数有特点,双曲线相背离得远; k为正,图在一、三(象)限,k为负,图在二、四(象)限; 图在一、三函数减,两个分支分别减。 图在二、四正相反,两个分支分别增; 线越长越近轴,永远与轴不沾边。 |