一、把循环小数的小数部分化成分数的规则: ①纯循环小数小数部分化成分数:将一个循环节的数字组成的数作为分子,分母的各位都是9,9的个数与循环节的位数相同,最后能约分的再约分。 ②混循环小数小数部分化成分数:分子是第二个循环节以前的小数部分的数字组成的数与不循环部分的数字所组成的数之差,分母的头几位数字是9,9的个数与一个循环节的位数相同,末几位是0,0的个数与不循环部分的位数相同。 二、分数转化成循环小数的判断方法: ①一个最简分数,如果分母中既含有质因数2和5,又含有2和5以外的质因数,那么这个分数化成的小数必定是混循环小数。 ②一个最简分数,如果分母中只含有2和5以外的质因数,那么这个分数化成的小数必定是纯循环小数。 三、练习题填一填: (1)一个数的小数部分,从某一位数起,一个数字或者几个数字()出现,这样的小数叫做循环小数。 (2)4.202320235……,它的循环节是(),用简便方法表示是(),将它保留三位小数是()。 (3)在 里填上“>”“<”或“=”。 0.6 0.6• 5÷9 0.9• 0.7•1• 0.717 7÷6 1.1•6• (4)在0.2023,5.234,4.99……,0.18, 3.20239……,0.20235……等数中, 是有限小数的有() 是无限小数的有() 是循环小数的有() 2. 把下面的数从大到小排列起来。 5.1•234•5.12•34• 5.123•4•5.2023• |