要明确四点: A、一般情况下,四则运算的计算顺序是:有括号时,先算 ,没有括号时,先算 ,再算 ,只有同一级运算时,从左往右 。 B、由于有的计算题具有它自身的特征,这时运用运算定律,可以使计算过程简单,同时又不容易出错。 C、注意,对于同一个计算题,用简便方法计算,与不用简便方法计算得到的结果应该相同。我们可以用两种计算方法得到的结果对比,检验我们的计算是否正确。 D、分数乘除法计算题中,如果出现了带分数,一定要将带分数化为假分数,再计算。 一、当一个计算题只有同一级运算(只有乘除或只有加减运算)又没有括号时,我们可以“带符号搬家”。 (a+b+c=a+c+b, a+b-c=a-c+b, a-b+c=a+c-b, a-b-c=a-c-b; a×b×c=a×c×b, a÷b÷c=a÷c÷b , a×b÷c=a÷c×b, a÷b×c=a×c÷b,) 12.06+5.07+2.94 30.34+9.76-10.34 二A、当一个计算题只有加减运算又没有括号时,我们可以在加号后面直接添括号,括到括号里的运算原来是加还是加,是减还是减。但是在减号后面添括号时,括到括号里的运算,原来是加,现在就要变为减;原来是减,现在就要变为加。 a+b+c=a+ (b + c ), a+b-c=a +(b-c), a-b+c=a –(b-c), a-b-c= a-( b +c); 933-15.7-4.3 41.06-19.72-20.28 B、 当一个计算题只有乘除运算又没有括号时,我们可以在乘号后面直接添括号,括到括号里的运算,原来是乘还是乘,是除还是除。但是在除号后面添括号时,括到括号里的运算,原来是乘,现在就要变为除;原来是除,现在就要变为乘。 a×b×c=a×(b×c), a×b÷c=a×(b÷c), a÷b÷c=a÷(b×c) , a÷b×c=a÷(b÷c), 700÷14÷5 18.6÷2.5÷0.4 1.96÷0.5÷4 1.06×2.5×4 三A、当一个计算题只有加减运算又有括号时,我们可以将加号后面的括号直接去掉,原来是加现在还是加,是减还是减。但是将减号后面的括号去掉时,原来括号里的加,现在要变为减;原来是减,现在就要变为加。(现在没有括号了,可以带符号搬家了哈) a+ (b + c )= a+b+c a +(b-c)= a+b-c a –(b-c)= a-b+c a-( b +c)= a-b-c; 19.68-(2.68+2.97) 5.68+(5.39+4.32) 19.68-(2.97+9.68) B、当一个计算题只有乘除运算又有括号时,我们可以将乘号后面的括号直接去掉,原来是乘还是乘,是除还是除。但是将除号后面的括号去掉时,原来括号里的乘,现在就要变为除;原来是除,现在就要变为乘。(现在没有括号了,可以带符号搬家了哈) a×(b×c) = a×b×c, a×(b÷c) = a×b÷c, a÷(b×c) = a÷b÷c , a÷(b÷c) = a÷b×c, 1.25×( 8 ÷0.5) 0.25×( 4 × 1.2) 1.25×( 213×0.8) 四、乘法分配律的两种典型类型 A,、括号里是加或减运算,与另一个数相乘,注意分配 B、注意相同因数的提取。 A、巧借,可要注意还哦 ,有借有还,再借不难蛮。 B、分拆,可不要改变数的大小哦 3.2×12.5×25 1.25×88 3.6×0.25 C,巧变除为乘(除以 相当于乘 4, 除以 相当于乘8,……) 7.6÷0.25 3.5÷0.125 D/注意构造,让我们的算式满足乘法分配律的条件 1.8×99+1.8 3.8×9.9+0.38 |