◆您现在正在阅读的三角形边的关系文章内容由收集!本站将为您提供更多的精品教学资源!三角形边的关系教学内容: 人教版《义务教育课程标准实验教科书数学》四年级下册第82页的内容。 教学目标: 1.知识与技能: (1)通过创设问题情境、观察比较,初步感知三角形边的关系,体验学数学的乐趣。 (2)运用三角形任意两边的和大于第三边的性质,解决生活中的实际问题。 2.过程与方法: 通过实践操作、猜想验证、合作探究,经历发现三角形任意两边的和大于第三边这一性质的活动过程,发展空间观念,培养逻辑思维能力,体验做数学的成功。 3.情感与态度: (1)发现生活中的数学美,会从美观和实用的角度解决生活中的数学问题。 (2)学会从全面、周到的角度考虑问题。 教学重点: 理解、掌握三角形任意两边之和大于第三边的性质。 教学难点: 引导探索三角形的边的关系,并发现三角形任意两边的和大于第三边的性质。 教学准备: 课件、学具袋。 教学过程: (课前谈话)今天很高兴能认识各位在座的小朋友。我呀,是来自绿影小学的包老师。来之前,我就听说某某学校的小朋友,聪明伶俐,爱动脑筋,是不是这样啊?为了表扬同学们在课堂的表现,老师还特地带来了一些小奖品,瞧,都贴黑板上了。(三张不同颜色的小笑脸)你们喜欢吗? 如果你能答出老师的问题,老师就让你上来任意选一个小奖品。你们想选哪一个?有几种选法?(三种) 如果某个小朋友回答问题特别棒,老师就让你任意选两个。有几种选法?(三种) 教师:真不错,不知不觉中,同学们已经回答出老师的两个问题啦。希望大家再接再厉,在课堂上有更好的表现。 一、动手游戏,提出问题 教师:请同学们拿出你的1号学具袋,看看里面有什么? (三根小棒。) 三根小棒能围成一个三角形吗? 学生先猜。 教师:光猜可不行,知识是科学,咱们来动手围一围。 学生动手围,集体交流:有的能围成,有的不能围成。 教师请能围成和不能围成的同学分别上来展示一下。 同时板贴:能围成三角形 不能围成三角形 教师小结:随意的给你三根小棒,有的时候能围成一个三角形,有的时候不能围成一个三角形。看来呀,咱们考虑问题的时候要全面、周到。 提出问题:那么,能围还是不能围,跟三角形的什么有关系呢? 引导学生明白:跟三角形的边有关系。 教师:对,三角形的边有什么样的关系呢?同学们,你们想不想自己动手来探究这个问题呀? 板书课题:三角形边的关系(让学生收拾好一号学具袋) [设计意图:随意的给学生三根小棒,让学生先猜能否围成一个三角形,再通过动手围,发现有的三根小棒能围成三角形,有的三根小棒不能围成三角形。这不仅激活了学生的旧知,刺激了学生的思维,更激发了学生探索的欲望:能否围成一个三角形跟什么有关系,怎么的三根小棒才能围成三角形呢?] 二、实践操作,探究学习 1.动手操作。 电脑出示:现有两根小棒,一根长3厘米,一根长6厘米,再配一根多长的小棒,就能围成一个三角形? 教师说明操作要求: (1)从2号学具袋中拿出操作材料(两根小棒、作业纸和实践操作表格); (2)在作业纸上有不同的线段,请你用两根小棒去围一围,看看是否能围成一个三角形(至少要和三条不同的线段围一围); (3)将数据和结果填写在表格中,能围成的用表示,不能围成的用表示。 学生活动,教师巡视指导。 2.汇报交流。 教师:下面就请同学们来汇报一下你的操作结果。 请不同的学生汇报,教师在课件中输入数据和结果。如下图: 第一边 长度(cm) 6 2 3 4 5 6 7 8 9 10 ◆您现在正在阅读的三角形边的关系文章内容由收集!本站将为您提供更多的精品教学资源!三角形边的关系学生猜出:两边之和大于第三边。 板贴:两边之和>第三边 能围成三角形? 同时,教师在旁边画上? 初步验证猜想: 教师:这个猜想对不对呢?这需要进行验证。看看这些能围成三角形的边,是不是具备这样的关系? 教师指着4厘米,问:当第三根小棒是4厘米的时候,谁能来说一说? 同时课件进行演示,得出:4+36。 课件演示。 教师指着5厘米,问:那5厘米? 得出:5+36 教师点击:那么下面就依次类推了。课件依次出现算式:6+3 7+3 8+3 9+36 [设计意图:由于有了两边之和第三边,不能围成三角形这个结论作基础,学生会自然而然地想到当两边之和大于第三边的时候就能围成三角形。这时教师及时说明,这只是猜想,要经过验证才能判断它是否正确。] 第三个层次:引发矛盾,突破难点。 教师指着表格,质疑:你们有没有发现问题啊?咱们在动手操作的时候得出9厘米不能围,可是9+36呀,这符合我们刚刚得出的结论啊? 先让学生说一说,然后进行课件演示。 教师:9和3这组的两边之和是大于6,可是它能围成吗?(不能)(课件演示确实不能围成。) 教师:我们再换一组看看,3和6这组的两边之和第三边9比,什么关系?(相等) 教师:那还要看哪一组?(6和9的和与3比) 引导学生明确:只通过一组来判断能否围成三角形,全面吗?那应该怎么说? 引导学生得出任意两字。 [设计意图:9+36却围不成三角形,这一下就给学生制造出了矛盾冲突,学生就会立刻思索这三边到底还存在什么样的关系,从而发现只通过一组两边的和来判断能否围成三角形是不全面的,必须要看三组,这样任意在这里的引出也就水到渠成了。] 第四个层次:再次验证,明确三角形三边的关系。 教师:下面我们利用这个结论再来验证一下,这些能围成三角形的三边,是不是都具备这样的关系?每个同学选一个你喜欢的在小组内交流。 学生交流,集体汇报。 第一边 长度(cm) 6 2 3 4 5 6 7 8 9 10 ◆您现在正在阅读的三角形边的关系文章内容由收集!本站将为您提供更多的精品教学资源!三角形边的关系3.儿童乐园要建一个凉亭,亭子上部是三角形木架,现在已经准备了两根三米长的木料,假如你是设计师,第三根木料会准备多长?并说明理由。 [设计意图:从问题中来,到问题中去,让学生用学习的知识解决生活中的现实问题,并从美观和讲究实用的角度出发,从而也培养了学生的综合能力。] 四、全课小结,从考虑问题要全面,引出第三边的取值范围 [设计意图:对于小学四年级的学生而言,范围的建立的确是有一定困难的。再次呈现前面的研究表格,这些数据是具体的,教师提出:3.5厘米行吗?3.2呢?3.1呢?3.01呢?不断地向3逼近,学生自然会想到3.2023也是可以的,那该怎样表述呢?比3厘米长已呼之欲出;以此思考,学生不难得出又必须比9厘米短。这样层层递进的启发引导,发散拓宽了学生的思维,有机地渗透了无限逼近的数学思想,培养了学生抽象、概括的能力。] |