小编寄语:一学期以来,同学们的许多方面在学校里得到了发展,接下来的期末考试,会对这一年以来,同学们的进步情况,下面小编整理了九年级数学复习资料,供大家参考,希望对大家能有所帮助。 反比例函数 一、复习目标: (1)巩固反比例函数的概念,会求反比例函数表达式并能画出图象. (2)巩固反比例函数图象的变化其及性质并能运用解决某些实际问题. (3)善于用适当的函数表示法刻画某些实际问题中变量之间的关系,并结合函数图象分析简单的数量关系。 (4)学习并熟悉数形结合的方法对解决实际问题有重要的作用,用待定系数法求函数解析式是一种常用的方法。 二、知识梳理 表达式y=kx(k0) 图象k0 性质 1.图象在第一、三象限; 2.每个象限内,函数y的值随x的增大而减小.1.图象在第二、四象限; 2.在每个象限内,函数y值随x的增大而增大. 在一个反比例函数图象上任取两点P,Q,过点P,Q分别作x、轴,y轴的平行线,与坐标轴围成的矩形面积为S1,S2则S1=S2=|k| 反比例函数既是轴对称图形,又是中心对称图形。 二次函数 一、复习目标: (1)认识二次函数是常见的简单函数之一,也是刻画现实世界变量之间关系的重要数学模型. (2)理解二次函数的概念,掌握其函数关系式以及自变量的取值范围. (3)能正确地描述二次函数的图象,能根据图象或函数关系式说出二次函数图象的特征及函数的性质,并能运用这些性质解决问题. (4)能根据问题中的条件确定二次函数的关系式,并运用二次函数及其性质解决简单的实际问题. (5)了解二次函数与一元二次方程的关系,能利用二次函数的图象求一元二次方程的近似解. 二、知识梳理 1、二次函数的概念:形如的函数. 2、抛物线的顶点坐标是();对称轴是直线. 3、当a>0时抛物线的开口向上;当a<0时抛物线的开口向下.越大,抛物线的开口越小;越小,抛物线的开口越大.相同的抛物线,通过平移(或旋转、轴对称)一定能够重合. 4、a、b同号时抛物线的对称轴在y轴的左侧;a、b异号时抛物线的对称轴在y轴的右侧.抛物线与y轴的交点坐标是(0,C). 5、二次函数解析式的三种形式: (1)一般式:(2)顶点式: (3)交点式:,抛物线与x轴的交点坐标是()和(). 6、抛物线的平移规律:从到,抓住顶点从(0,0)到(h,k). 7、(1)当>0时,一元二次方程有两个实数根,抛物线与x轴的交点坐标是A()和B()。 (2)当=0时,一元二次方程有两个相等的实数根(或说一个根),抛物线的顶点在x轴上,其坐标是(). (3)当<0时,一元二次方程没有实数根,抛物线与x轴没有交点. 8、二次函数的最值问题和增减性: 系数a的符号时,最值 增减性 a>0 最小值 时y随x的增大而减小. a<0 最大值时y随x的增大而增大. 相似三角形 一、复习目标: 1.巩固相似三角形的概念。掌握相似三角形的性质。会运用复习相似三角形的判定判断两个三角形相似。 2、会利用三角形相似,证明角相等,线段成比例,表示线段的长等。 3、能够运用三角形相似的知识,解决不能直接测量物体的长度和高度(如测量金字塔高度问题、测量物体内径)等的一些实际问题。 4、能把实际问题转化成有关相似三角形的数学模型。 二、知识梳理 1.相似三角形的定义: 对应角相等、对应边成比例的三角形叫做相似三角形。 2.相似比 相似三角形的对应边的比,叫做相似三角形的相似比。 △ABC∽△A/B/C/,如果BC=3,B/C/=1.5,那么△A/B/C/与△ABC的相似比为_____1:2____. 二、三角形的识别、性质和应用 1、识别 ①如果一个三角形的两角分别与另一个三角形的两角对应相等,那么这两个三角形相似. ②如果一个三角形的两条边分别与另一个三角形的两条边对应成比例,并且夹角相等,那么这两个三角形相似. ③如果一个三角形的三条边分别与另一个三角形的三条边对应成比例,那么这两个三角形相似. 2、性质:两个三角形相似,则: ①它们的对应边成比例,对应角相等;②它们的对应高、对应中线、对应角平分线的比等于相似比; ③它们的周长比等于相似比;面积比等于相似比的平方. 3、比例线段: (1)比例的基本性质:如果a:b=c:d,那么反过来:如果那么:a:b=c:d。 (2)b是线段a、d的比例中项,则。反过来亦成立。 4、黄金分割: (1)如果B是线段AC的黄金分割点(ACBC),则AC:BC==0.618 (2)黄金三角形的作法及性质,并会推广黄金矩形的性质。 5、相似多边形的定义及性质6、图形位似的定义及性质 圆的基本性质 圆基本元素:圆的定义,圆心,半径,弧,弦,弦心距 的垂径定理 认对称性:旋转不变性,轴对称,中心对称(强) 识圆心角、弧、弦、弦心距的关系 与圆有关的角:圆心角,圆周角 弧长,扇形的面积,弓形的面积,及组合的几何图形 圆中的有关计算: 圆锥的侧面积、全面积 一、圆的概念 1、圆的定义:线段OA绕着它的一个端点O旋转一周,另一个端点A所形成的封闭曲线,叫做圆.点O叫做圆心,线段OP叫做半径。 2、弧:圆上任意两点间部分叫做圆弧,简称弧。优弧、劣弧以及表示方法。 3、弦,弦心距,圆心角,圆周角, 点和圆的位置关系: 如果P是圆所在平面内的一点,d表示P到圆心的距离,r表示圆的半径,则: (1)dr 二、几点确定一个圆 问题:(1)经过一个已知点可以画多少个圆? (2)经过两个已知点可以画多少个圆?这样的圆的圆心在怎样的一条直线上? (3)过同在一条直线上的三个点能画圆吗? 定理:经过确定一个圆。 三、圆的性质定理 1、垂径定理:垂直弦的直径平分弦,并且平分弦所对的弧(圆的轴对称性); 2、推论1:平分弦(不是直径)的直径垂直于弦,并且平分弦所对的弧 3、推论2:平分弧的直径垂直平分弧所对的弦 4、圆心角定理:在同圆或等圆中,如果两个圆心角、两条弧、两条弦或两条弦的弦心距中有一组量相等,那么它们所对应的其余各组量都分别相等。 5、圆周角定理:一条弧所对的圆周角等于它所对的。 推论:1、半圆(或直径)所对的圆周角是,90圆周角所对的弦是。 2、同弧或等弧所对的圆周角相等;在同圆或等圆中,相等的圆周角所对的弧也相等。 五、弧长及扇形的面积圆锥的侧面积和全面积 1、弧长公式: 2、扇形的面积: 如何在平时提高数学成绩 1、按部就班数学是环环相扣的一门学科,哪一个环节脱节都会影响整个学习的进程。所以,平时学习不应贪快,要一章一章过关,不要轻易留下自己不明白或者理解不深刻的问题。 2、强调理解概念、定理、公式要在理解的基础上记忆。每新学一个定理,尝试先不看答案,做一次例题,看是否能正确运用新定理;若不行,则对照答案,加深对定理的理解。 3、基本训练学习数学是不能缺少训练的,平时多做一些难度适中的练习,当然莫要陷入死钻难题的误区,要熟悉高考的题型,训练要做到有的放矢。 4、重视平时考试出现的错误。定一个错题本,专门搜集自己的错题,这些往往就是自己的薄弱之处。复习时,这个错题本也就成了宝贵的复习资料。 数学的学习有一个循序渐进的过程,妄想一步登天是不现实的。熟记书本内容后将书后习题认真写好,有些同学可能认为书后习题太简单不值得做,这种想法是极不可取的,书后习题的作用不仅帮助你将书本内容记牢,还辅助你将书写格式规范化,从而使自己的解题结构紧密而又严整,公式定理能够运用的恰如其分,以减少考试中无谓的失分。 快速提高数学成绩的五大攻略 攻略一:概念记清,基础夯实。数学做题,千万不要忽视最基本的概念、公理、定理和公式,特别是不定项选择题就要靠清晰的概念来明辨对错,如果概念不清就会感觉模棱两可,最终造成误选。因此,要把已经学过的教科书中的概念整理出来,通过读一读、抄一抄加深印象,特别是容易混淆的概念更要彻底搞清,不留隐患。 攻略二:适当做题,巧做为王。有的同学埋头题海苦苦挣扎,辅导书做掉一大堆却鲜有提高,这就是陷入了做题的误区。数学需要实践,需要大量做题,但要埋下头去做题,抬起头来想题,在做题中关注思路、方法、技巧,要苦做更要巧做。考试中时间最宝贵,掌握了好的思路、方法、技巧,不仅解题速度快,而且也不容易犯错。 攻略三:前后联系,纵横贯通。在做题中要注重发现题与题之间的内在联系,绝不能傻做。在做一道与以前相似的题目时,要会通过比较,发现规律,穿透实质,以达到触类旁通的境界。特别是几何题中的辅助线添法很有规律性,在做题中要特别记牢。 攻略四:记录错题,避免再犯。俗话说,一朝被蛇咬,十年怕井绳,可是同学们常会一次又一次地掉入相似甚至相同的陷阱里。因此,我建议大家在平时的做题中就要及时记录错题,还要想一想为什么会错、以后要特别注意哪些地方,这样就能避免不必要的失分。毕竟,考试当中是分分必争,一分也失不得。 攻略五:集中兵力,攻下弱点。每个人都有自己的软肋,如果试题中涉及到你的薄弱环节,一定会成为你的最痛。因此一定要通过短时间的专题学习,集中优势兵力,打一场漂亮的歼灭战,避免变成瘸腿。 |