其它公式 (1)(sin)^2+(cos)^2=1 (2)1+(tan)^2=(sec)^2 (3)1+(cot)^2=(csc)^2 证明下面两式,只需将一式,左右同除(sin)^2,第二个除(cos)^2即可 (4)对于任意非直角三角形,总有 tanA+tanB+tanC=tanAtanBtanC 证: A+B=-C tan(A+B)=tan(-C) (tanA+tanB)/(1-tanAtanB)=(tan-tanC)/(1+tantanC) 整理可得 tanA+tanB+tanC=tanAtanBtanC 得证 同样可以得证,当x+y+z=nZ)时,该关系式也成立 由tanA+tanB+tanC=tanAtanBtanC可得出以下结论 (5)cotAcotB+cotAcotC+cotBcotC=1 (6)cot(A/2)+cot(B/2)+cot(C/2)=cot(A/2)cot(B/2)cot(C/2) (7)(cosA)^2+(cosB)^2+(cosC)^2=1-2cosAcosBcosC (8)(sinA)^2+(sinB)^2+(sinC)^2=2+2cosAcosBcosC (9)sin+sin(+2/n)+sin(+2*2/n)+sin(+2*3/n)+……+sin[+2*(n-1)/n]=0 cos+cos(+2/n)+cos(+2*2/n)+cos(+2*3/n)+……+cos[+2*(n-1)/n]=0 以及 sin^2()+sin^2(-2/3)+sin^2(+2/3)=3/2 tanAtanBtan(A+B)+tanA+tanB-tan(A+B)=0 |