圆与弧的公式: 正n边形的每个内角都等于(n-2)180/n 弧长计算公式:L=n兀R/180 扇形面积公式:S扇形=n兀R^2/360=LR/2 内公切线长=d-(R-r)外公切线长=d-(R+r) ①两圆外离dR+r②两圆外切d=R+r③两圆相交R-rr)④两圆内切d=R-r(Rr)⑤两圆内含dr) 定理相交两圆的连心线垂直平分两圆的公共弦 定理把圆分成n(n3):⑴依次连结各分点所得的多边形是这个圆的内接正n边形⑵经过各分点作圆的切线,以相邻切线的交点为顶点的多边形是这个圆的外切正n边形 定理任何正多边形都有一个外接圆和一个内切圆,这两个圆是同心圆 如果在一个顶点周围有k个正n边形的角,由于这些角的和应为360,因此k(n-2)180/n=360化为(n-2)(k-2)=4 弧长计算公式:L=n兀R/180 因式分解公式: 公式:a^3+b^3+c^3-3abc=(a+b+c)(a^2+b^2+c^2-ab-bc-ca) 平方差公式:a平方-b平方=(a+b)(a-b) 完全平方和公式:(a+b)平方=a平方+2ab+b平方 完全平方差公式:(a-b)平方=a平方-2ab+b平方 两根式:ax^2+bx+c=a[x-(-b+(b^2-4ac))/2a][x-(-b-(b^2-4ac))/2a]两根式 立方和公式:a^3+b^3=(a+b)(a^2-ab+b^2) 立方差公式:a^3-b^3=(a-b)(a^2+ab+b^2) 完全立方公式:a^33a^2b+3ab^2b^3=(ab)^3. 扇形面积公式:S扇形=n兀R^2/360=LR/2023内公切线长=d-(R-r)外公切线长=d-(R+r) 一元二次方程公式与判别式: 一元二次方程的解 -b+(b2-4ac)/2a -b-(b2-4ac)/2a 根与系数的关系 X1+X2=-b/a X1*X2=c/a 注:韦达定理 |