高二数学直线与平面平行的判定和性质人教版 【本讲教育信息】 一. 教学内容: 直线与平面平行的判定和性质 二. 教学重、难点: 1. 直线与平面的位置关系 (1)直线在平面内 2. 直线和平面平行的判定 , , 3. 直线和平面平行的性质 4. 将线面问题转化为线线问题 “过线作面找交线” 【典型例题】 [例1] 如图,已知P是 ABCD所在平面外一点,M为PB的中点,求证:PD//平面MAC 证:连结AC、BD相交于点O,连结MO ∵ O为BD的中点,又M为PB的中点 MO//PD 又 ∵ MO 面MAC,PD 面MAC PD//面MAC [例2] 正方体 中,棱长为 ,画出过A、C、B1的平面与下底面的交线 。 解:在面 内,过点 作直线 由正方体性质面 为面 与面 的交线 [例3] 求证:如果一条直线和两个相交平面都平行,那么这条直线和它们的交线平行。 已知: , ,求证: 证:过 作面 交面 于 ∵ 同理,过 作 ∵ 又 ∵ 又面 过 交 于 ∵ [例4] 如图,A、B分别是异面直线 上的两点,AB的中点O作面 与 、 都平行,M、N分别是 上的另外的两点,MN与 交于点P。求证:P是MN的中点。 证:连结AN交 于Q,连结OQ、PQ ∵ ,OQ是过 的面ABN与 的交线 OQ 同理PQ// 在 中,O是AB的中点,OQ//BN Q是AN的中点 又 ∵ PQ//AM P是MN的中点 [例5] 三个平面两两相交得三条直线,求证:这三条直线相交于一点或两两平行。 已知: 求证: 交于一点或 证:∵ 的位置关系只有相交或平行两种情况 (1) 与 相交时,设 ,则 ∵ P为 和 的公共点 又 ∵ 相交于同一点P (2) 时,∵ 故 两两平行 [例6] 如图,两个全等的正方形ABCD和ABEF所在平面相交于AB, ,且AM=FN,求证:MN//面BCE。 证:作MGBC于G,NQBE于Q,连结GQ,则MG//AB,NQ//AB MG//NQ 而 MG=NQ 四边形MGQN为平行四边形 MN//GQ ∵ MN 面BCE,GQ 面BCE MN//面BCE [例7] 正方体 的棱长为1,过 且平行于对角线 的截面的面积等于多少? 解:连结 交于O 取 中点E,连结OE、 , ∵ E、O分别为 的中点 ∵ 面 , 面 B1D//面 ∵ 【模拟试题】(答题时间:60分钟) 1. 长方体 中,如下图,点 , 求证:MN//平面ABCD。 2. 如下图,在矩形ABCD中,AB=2BC,P、Q分别为线段AB、CD的中点,求证:AQ//平面CEP。 3. 已知P是 所在平面外一点, ,试过AM作一平面平行于BC,并说明画法的理论依据。 4. 已知一条直线与一个平面平行,求证:经过这个平面的一点与这条直线平行的直线必在这个平面内。 【试题答案】 1. 证明:连结AC,A1C1,因为 是长方体,所以 又因为 平面 , 平面 所以AC//平面 ,又因为AC 平面 ,且平面 平面 所以 ,因为 平面ABCD, 平面ABCD,所以MN//平面ABCD 2. 证明:在矩形ABCD中,因为AP=PB,DQ=QC,所以 ,所以四边形AQCP为平行四边形,所以 ,因为CP 平面CEP,AQ 平面CEP,所以AQ//平面CEP 3. 证明:在面PBC内作MN//BC,交PC于N,连结AN,则BC//面AMN 面AMN为所作平面 依据:直线与平面平行的判定 4. 证:(反证法)假设 ∵ 和 相交 ∵A和 确定一个平面 即 在 内,过A作 使 ∵ ∵ 与 矛盾 不成立 |