人人终身学习知识网~是各类综合知识资源信息分享,提升综合素质与提高知识技能的终身学习网络平台

 找回密码
 立即注册

QQ登录

只需一步,快速开始

微信登录

微信扫码,快速开始

[答题技巧] 初中数学《弧长和扇形面积》教案

[复制链接]

作课类别 课题 24.4.1弧长和扇形面积 课型 新授

教学媒体 多媒体

标 知识

技能 掌握弧长公式和扇形面积公式的推导过程,能运用弧长公式和扇形面积公式进行有关计算.

过程

方法 通过弧长和扇形面积公式的推导过程与运用,发展学生分析问题、解决问题的能力.

情感

态度 通过弧长公式和扇形面积公式的推导,发展学生抽象、理解、概括、归纳能力和迁移能力.

教学重点 弧长,扇形面积公式的导出及应用.

教学难点 用公式解决实际问题

教学过程设计

教学程序及教学内容 师生行为 设计意图

一、情境引入

课本110页引例:制造弯形管道时,经常要先按中心线计算“展直长度”,再下料,这就涉及到计算弧长的问题,这节课来探究弧长求法.

二、探究新知

(一)弧长公式

1推导:

问题:①弧长属于圆周上部分,圆周长计算公式是什么?

②圆周长可以看成是多少度的圆心角所对的弧长?

③10的圆心角所对的弧长是多少?20的圆心角所对的弧长呢?④n0的圆心角所对的弧长是多少?

得到:在半径为R的圆中,

因为2023的圆心角所对的弧长就是圆周长C=2R,

10圆心角所对弧长n0的圆心角所对弧长

弧长公式:

2.应用:

⑴解决本节课开始的问题.

⑵填空:

①.半径为3cm,120的圆心角所对的弧长是_______cm;

②.已知圆心角为150,所对的弧长为20,则圆的半径为_______;

③.已知半径为3,则弧长为的弧所对的圆心角为_______.

④如图:四边形ABCD是正方形,曲线DAlBlClDl……叫做“正方形的渐开线”,其中 的圆心依次按A、B、C、D循环,它们依次连接.取AB=l,则曲线DAlBl…C2D2的长是______ (结果保留)

(二)扇形面积公式

1推导:

1)圆面积S=R2;(2)圆心角为1的扇形的面积:

(3)圆心角为n的扇形的面积是圆心角为1的扇形的面积n倍;

(4)圆心角为n的扇形的面积 = .

归纳:若设⊙O半径为R,圆心角为n的扇形的面积S扇形,则

扇形面积公式 S扇形=

2应用:

⑴扇形的半径为24,面积为240 ,则这个扇形的圆心角为 ;

⑵ 如图2,水平放置的圆柱形排水管道的截面半径是0.6m,其中水面高0.3m,求截面上有水部分的面积(精确到0.01m)

(三)弧长公式与扇形面积公式的关系

问题:扇形的面积公式与弧长公式有联系吗?得到

三、课堂训练

完成课本112页练习

补充:1.扇形的弧长为 ,半径为3,则其面积为 ;

2. 已知:如图,矩形ABCD中,AB=1cm,BC=2cm,以B为圆心,BC为半径作 圆弧交AD于F,交BA延长线于E,求扇形BCE被矩形所截剩余部分的面积.

四、小结归纳

1弧长公式

2扇形面积公式

3弧长公式与扇形面积公式的关系

五、作业设计

作业:复习巩固作业和综合运用为全体学生必做;拓广探索为成绩中上等学生必做.

补充:将一块边长为1的正三角形木板沿水平线翻滚,B点从开始至结束所走过的路径是多少? 教师提出问题,引起学生思考,了解本节课要学习内容.

教师提出问题,学生通过复习圆周长公式,以及圆心角和其所对弧的关系自主探究弧长公式,经历猜想 计算 推理 感性 理性,加深对弧长公式的理解,小组之间进行交流,汇总,师生总结.

学生初步应用弧长公式进行计算,结合图形分析思考,了解公式的不同使用方法.从而发展学生的解决实际问题的能力和应用意识,并让学生逐渐的学会总结,教师检查知识的落实性,以便发现问题和及时解决问题。

教师引导学生类比弧长公式的推导方法尝试探究扇形面积公式

学生独立思考,尝试解题,之后师生交流思路和解法,进一步加深对扇形面积公式的认识.

学生比较两个公式,找它们的联系,明确知识之间的联系,在解题时,根据条件,选择适当的公式.

教师组织学生进行练习,教师巡回检查,集体交流评价,教师指导学生写出解答过程,体会方法,总结规律.

让学生尝试归纳,总结,发言,体会,反思,教师点评汇总 由实际问题引出课题,激发学生的学习兴趣,感受数学来源于生活.

推导弧长公式,使学生明确公式的推导过程,知道公式的来龙去脉,让学生体会从特殊推广到一般的研究方法

让学生初步应用弧长公式,通过运用掌握公式的运用技巧,培养学生计算能力及分析解决实际问题的能力.

学生类比推导扇形面积公积公式

通过分析,引导学生将复杂问题转化为简单的问题,体现化归思想,同时,理解数学知识来源于生活实际,又用来解决实际中的问题,强化数学的应用意识.

运用所学公式迅速、正确解题,培养学生良好的学习习惯,训练学生的解题速度和综合运用知识解题的能力.

归纳提升,加强学习反思,帮助学生养成系统整理知识的习惯

巩固深化提高

板 书 设 计

课题

弧长公式

应用 扇形面积公式关系定理应用

应用

弧长公式与扇形面积公式的关系 归纳

回复

使用道具 举报

小黑屋/人人终身学习知识网~是各类综合知识资源信息分享,提升综合素质与提高知识技能的终身学习网络平台

Powered by 5wangxiao

© 2007-2021 5wangxiao.Com Inc.

快速回复 返回顶部 返回列表