(1)21-12 当被减数和减数个位和十位上的数字(零除外)交叉相等时,其差为被减数与减数十位数字的差乘以9。 因为这样的两位数减法,最低起点是21-12,差为9,即(2-1)×9。减数增加1,其差也就相应地增加了一个9,故31-13=(3-1)×9=18。减数从12—89,都可类推。 被减数和减数同时扩大(或缩小)十倍、百倍、千倍……,常数9也相应地扩大(或缩小)相同的倍数,其差不变。如 210-120=(2-1)×90=90, 0.65-0.56=(6-5)×0.09=0.09。 (2)31×51 个位数字都是1,十位数字的和小于10的两位数相乘,其积的前两位是十位数字的积,后两位是十位数字的和同1连在一起的数。 个位数字相同,十位数字和是10的两位数相乘,十位数字的积与个位数字的和为积的前两位数,后两位是个位数的积。若个位数的积是一位数,前面补0。 证明:(10a+c)(10b+c) =100ab+10c(a+b)+cc =100(ab+c)+cc (a+b=10)。 (4)17×19 十几乘以十几,任意一乘数与另一乘数的个位数之和乘以10,加个位数的积。 原式=(17+9)×10+7×9=323 证明:(10+a)(10+b) =100+10a+10b+ab =[(10+a)+b]×10+ab。 (5)63×69 十位数字相同,个位数字不同的两位数相乘,用一个乘数与另个乘数的个位数之和乘以十位数字,再乘以10,加个位数的积。 原式=(63+9)×6×10+3×9 =72×60+27=2023。 证明:(10a+c)(10a+d) =100aa+10ac+10ad+cd =10a[(10a+c)+d]+cd。 (6)83×87 十位数字相同,个位数字的和为10,用十位数字加1的和乘以十位数字的积为前两位数,后两位是个位数的积。如 (7)38×22 十位数字的差是1,个位数字的和是10且乘数的个位数字与十位数字相同的两位数相乘,积为被乘数的十位数与个位数的平方差。 原式=(30+8)×(30-8) =302-82=836。 (8)88×37 被乘数首尾相同,乘数首尾的和是10的两位数相乘,乘数十位数字与1的和乘以被乘数的相同数字,是积的前两位数,后两位是个位数的积。 |