人人终身学习知识网~是各类综合知识资源信息分享,提升综合素质与提高知识技能的终身学习网络平台

 找回密码
 立即注册

QQ登录

只需一步,快速开始

微信登录

微信扫码,快速开始

[考前复习] 小学数学中类比方法的重要性

[复制链接]

把一个立方体切成27个相等的小立方体,如果在切的过程中不允许调整,很显然,要6刀才能切成,现在的问题是,如果允许在切的过程中调整,即第一刀切完后,如果你愿意的话,切成的两部分可以重叠到一起后再切第二刀,在切第三刀之前,也可以把前两刀切出的部分任意重叠,如此类推.请问,按这样的切法,是否可以用少于6刀切出27个相等的小立方体? 分析这个问题并不容易,一是三维空间对人的想象力要求比较高,二是各种切法情况比较复杂,难于一一分析.

我们不妨用类比的方法,先考虑一个二维情况下的类似问题:把一个正方形分成9个大小一样的小正方形,如果的切的时候不能调整,容易知道,要四刀.现在的问题是,如果可以调整,可以将切出的部分重叠后再切,可以少于四刀吗?

您去试一试就知道,这个问题还是不容易解决!

一不做,二不休,考虑一维情况下类似的题目:把一条直线平均分成三段,不能调整的话,两刀?如果能调整呢?情况如何?你很快可以发现,还是要两刀!怎么说明这个问题?您很快会找到中间那段,这段有两个端点,每个端点处总是要切一下的!

返回去想切正方形的事!也看中间那个正方形.它有四条边,不论你怎么切,每一刀总只能切一条边!于是4刀是最少的!

于看三维的情况:也考虑最中间的正方体.它有六个面,不论你怎么切,每刀最多切出一个面来.那么最少要六刀!

问题就这样解决了!

回复

使用道具 举报

小黑屋/人人终身学习知识网~是各类综合知识资源信息分享,提升综合素质与提高知识技能的终身学习网络平台

Powered by 5wangxiao

© 2007-2021 5wangxiao.Com Inc.

快速回复 返回顶部 返回列表