人人终身学习知识网~是各类综合知识资源信息分享,提升综合素质与提高知识技能的终身学习网络平台

 找回密码
 立即注册

QQ登录

只需一步,快速开始

微信登录

微信扫码,快速开始

[考前复习] 高三数学知识点:解析几何专题

[复制链接]

天津市第四十二中学 张鼎言

进一步,把问题用图形表示出来,需求直线x-2y=m所与求轨迹的切点。

-,用判别式△=0→m=p,得切点Q(3p,p)

点Q到直线的x-2y=0距离是-,即-=-→p=2

(四)直线过圆锥曲线的焦点

复习导引:高考题解析部分大量的问题是直线与圆锥曲线相交,我们首先要抓住直线是否过圆锥曲线焦点?这部分第1至第5题阐明了直线过焦点的处理方法,第6题注又从反面说明在什么条件下才采用过焦点的方法。第4题引出了在什么条件下用两式相减可以简化推导过程。

1. 已知椭圆-+-=1的左、右焦点分别为F1,F2。过F1的直线交椭圆于B,D两点,过F2的直线交椭圆于A,C两点,且AC⊥BD,垂足为P。

(Ⅰ)设P点的坐标为(x0,y0),证明:-+-

(Ⅱ)求四边形ABCD的面积的最小值。

解(1)点P在以|F1F2|为直径的圆上,∴x02+y02=1,

-+--+-

=-=-1

解:分析(2)SABCD=S△ABC+S△ADC

=-|AC||BP|+-|AC||DP|

=-|AC||BD|

下面是如何求出|AC|=?|BD|=?

由椭圆第二定义:

|BD|=|BF2|+|DF2|

又右准线方程为x=-=3,e=-=-=-

|BF2|=(3-xB)e,|DF2|

=(3-xD)e

|BD|=[6-(xB+xD)■

过F2的直线lBD

y=k(x-1),k≠0,k存在。

-

|BD|=-■

=-

同理可求得:

|AC|=-

S=-

(3k2+2)+(2k2+3)2-

5(k2+1)2-

--■

SABCD-,当3k2+2=2k2+3,k2=1,k=±1。

当k不存在,可设BD⊥x轴,这时kAC=0

SABCD=-2-■=4-

∴(SABCD)min=-,此时k=±1

注:本题第(2)用两点间距离公式求|AC|、|BD|也可行,计算量稍大,如果直线过圆锥曲线焦点,就要考虑椭圆或双曲线第二定义。

回复

使用道具 举报

小黑屋/人人终身学习知识网~是各类综合知识资源信息分享,提升综合素质与提高知识技能的终身学习网络平台

Powered by 5wangxiao

© 2007-2021 5wangxiao.Com Inc.

快速回复 返回顶部 返回列表