教学重点: 掌握解决此类问题的方法。 教学难点: 理解题中的数量关系。 教学过程: 一、复习 1、把下面各数化成百分数。 0.631.2023.044 2、说说下面每个百分数的具体含义,是怎么求出来的?(哪两个数相比,把谁看作单位1) (1)某种学生的出油率是36%。 (2)实际用电量占计划用电量的80%。 (3)李家今年荔枝产量是去年的120%。 二、新授 1、根据数学信息提出问题:出示例2的情境图,让学生根据图中提供的条件提出用百分数解决的问题。 (1)计划造林是实际造林的百分之几? (2)实际造林是计划造林的百分之几? (3)实际造林比计划造林增加百分之几? (4)计划早林比实际造林少百分之几? 2、让学生先解决前两个问提。解决这类问题要先弄清楚哪两个数相比,哪个数是单位1,哪一个数与单位1相比。 3、学生自主解决实际早林比计划增加了百分之几的问题。 (1)分析数量关系,让学生自己尝试着用线段图表示出来。 (2)让学生说说是怎样理解实际造林比原计划增加百分之几的?(求实际造林比原计划增加百分之几,就是求实际造林比原计划增加的公顷数与原计划造林的公顷数相比的百分率,原计划造林的公顷数是单位1。) (3)明确解决问题的方法:让学生根据分析确定解决问题的方法,并列式计算出结果。 方法一:(14-12)12=2023.167=16.7% 方法二:20231.167=116.7%116.7%-100%=16.7% (4)小结解题方法:像这样的百分数问题有什么特点?解决它时要注意什么?(这是求一个数比另一个数增加百分之几的问题,它的解题思路和直接求一个数是另个数的百分之几的问题的分析思路基本相同,都要分清哪两个量在比较,谁是单位1,但是这里比较的两个量中有一个条件没有直接告诉我们,必须先求出。 (5)改变问题:问题如果是计划造林比实际造林少百分之几?,该怎么解决呢? 学生列出算式:(14-12)14 (再次强调两个问题中谁和谁比,谁是单位1。使学生体会到,用百分数解决问题和用分数解决问题一样要注意找准单位1。) 三、巩固练习 1、独立完成课本第90页做一做的题目。 2、练习二十二第1、2题。 四、布置作业 |