推导公式 tanα+cotα=2/sin2α tanα-cotα=-2cot2α 1+cos2α=2cos^2α 1-cos2α=2sin^2α 1+sinα=(sinα/2+cosα/2)^2 =2sina(1-sin;sup2;a)+(1-2sin;sup2;a)sina =3sina-4sin;sup3;a cos3a =cos(2a+a) =cos2acosa-sin2asina =(2cos;sup2;a-1)cosa-2(1-sin;sup2;a)cosa =4cos;sup3;a-3cosa sin3a=3sina-4sin;sup3;a =4sina(3/4-sin;sup2;a) =4sina[(√3/2);sup2;-sin;sup2;a] =4sina(sin;sup2;60°-sin;sup2;a) =4sina(sin60°+sina)(sin60°-sina) =4sina*2sin[(60+a)/2]cos[(60°-a)/2]*2sin[(60°-a)/2]cos[(60°-a)/2] =4sinasin(60°+a)sin(60°-a) cos3a=4cos;sup3;a-3cosa =4cosa(cos;sup2;a-3/4) =4cosa[cos;sup2;a-(√3/2);sup2;] =4cosa(cos;sup2;a-cos;sup2;30°) =4cosa(cosa+cos30°)(cosa-cos30°) =4cosa*2cos[(a+30°)/2]cos[(a-30°)/2]*{-2sin[(a+30°)/2]sin[(a-30°)/2]} =-4cosasin(a+30°)sin(a-30°) =-4cosasin[90°-(60°-a)]sin[-90°+(60°+a)] =-4cosacos(60°-a)[-cos(60°+a)] =4cosacos(60°-a)cos(60°+a) 上述两式相比可得 tan3a=tanatan(60°-a)tan(60°+a) |