数学网整理高中数学知识点总结:包括有关函数、数列、平面解析几何、立体几何等知识点的整理。 数学网各科复习资料:http://gaokao.xdf.cn/list_2023_1.html 不等式的基本性质知识点 1.不等式的定义:a-bb, a-b=0a=b, a-b0a ① 其实质是运用实数运算来定义两个实数的大小关系。它是本章的基础,也是证明不等式与解不等式的主要依据。 ②可以结合函数单调性的证明这个熟悉的知识背景,来认识作差法比大小的理论基础是不等式的性质。 作差后,为判断差的符号,需要分解因式,以便使用实数运算的符号法则。 如证明y=x3为单增函数, 设x1, x2∈(-∞,+∞), x1+x22] 再由(x1+)2+x220, x1-x20,可得f(x1) 2.不等式的性质: ① 不等式的性质可分为不等式基本性质和不等式运算性质两部分。 不等式基本性质有: (1) abb (2) acac (传递性) (3) ab+c (c∈R) (4) c0时,abc c0时,abac 运算性质有: (1) ada+cb+d。 (2) a0, c0acbd。 (3) a0anbn(n∈N, n1)。 (4) a0(n∈N, n1)。 应注意,上述性质中,条件与结论的逻辑关系有两种:“”和“”即推出关系和等价关系。一般地,证明不等式就是从条件出发施行一系列的推出变换。解不等式就是施行一系列的等价变换。因此,要正确理解和应用不等式性质。 ② 关于不等式的性质的考察,主要有以下三类问题: (1)根据给定的不等式条件,利用不等式的性质,判断不等式能否成立。 (2)利用不等式的性质及实数的性质,函数性质,判断实数值的大小。 (3)利用不等式的性质,判断不等式变换中条件与结论间的充分或必要关系。 |