人人终身学习知识网~是各类综合知识资源信息分享,提升综合素质与提高知识技能的终身学习网络平台

 找回密码
 立即注册

QQ登录

只需一步,快速开始

微信登录

微信扫码,快速开始

[试卷分析] 高一暑假作业:数学

[复制链接]

一、选择题

1.T1=,T2=,T3=,则下列关系式正确的是()

A.T1,

即T2bd

B.dca

C. dba

D.bda

【解析】由幂函数的图象及性质可知a0,b1,0ca.故选D.

【答案】D

3.设α∈{-1,1,,3},则使函数y=xα的定义域为R且为奇函数的所有α的值为()

A.1,3 B.-1,1

C.-1,3 D.-1,1,3

【解析】y=x-1=的定义域不是R;y=x=的定义域不是R;y=x与y=x3的定义域都是R,且它们都是奇函数.故选A.

【答案】A

4.已知幂函数y=f(x)的图象经过点,则f(4)的值为()

A.16 B.2

C. D.

【解析】设f (x)=xα,则2α==2-,所以α=-,f(x)=x-,f(4)=4-=.故选C.

【答案】C

二、填空题5.已知n∈{-2,-1,0,1,2,3},若nn,则n=________.

【解析】∵--,且nn,

∴y=xn在(-∞,0)上为减函数.

又n∈{-2,-1,0,1,2,3},

∴n=-1或n=2.【答案】-1或2

6.设f(x)=(m-1)xm2-2,如果f(x)是正比例函数,则m=________,如果f(x)是反比例函数,则m=________,如果f(x)是幂函数,则m=________.

【解析】f(x)=(m-1)xm2-2,

若f(x)是正比例函数,则∴m=±;

若f(x)是反比例函数,则即∴m=-1;

若f(x)是幂函数,则m-1=1,∴m=2.

【答案】±-12

三、解答题

7.已知f(x)=,

(1)判断f(x)在(0,+∞)上的单调性并证明;

(2)当x∈[1,+∞)时,求f(x)的最大值.

【解析】函数f(x)在(0,+∞)上是减函数.证明如下:任取x1、x2∈(0,+∞),且x10,x2-x10,x12x220.

∴f(x1)-f(x2)0,即f(x1)f(x2).

∴函数f(x)在(0,+∞)上是减函数.

(2)由(1)知,f(x)的单调减区间为(0,+∞),∴函数f(x)在[1,+∞)上是减函数,

∴函数f(x)在[1,+∞)上的最大值为f(1)=2.

8.已知幂函数y=xp-3(p∈N*)的图象关于y轴对称,且在

(0,+∞)上是减函数,求满足(a-1)(3+2a)的a的取值范围.

【解析】∵函数y=xp-3在(0,+∞)上是减函数,

∴p-30,即p3,又∵p∈N*,∴p=1,或p=2.

∵函数y=xp-3的图象关于y轴对称,

∴p-3是偶数,∴取p=1,即y=x-2,(a-1)(3+2a)

∵函数y=x在(-∞,+∞)上是增函数,

∴由(a-1)(3+2a),得a-13+2a,即a-4.

∴所求a的取值范围是(-4,+∞).

总结:2023高一数学暑假作业就为大家介绍到这儿了,希望小编的整理可以帮助到大家,祝大家学习进步。

回复

使用道具 举报

小黑屋/人人终身学习知识网~是各类综合知识资源信息分享,提升综合素质与提高知识技能的终身学习网络平台

Powered by 5wangxiao

© 2007-2021 5wangxiao.Com Inc.

快速回复 返回顶部 返回列表