人人终身学习知识网~是各类综合知识资源信息分享,提升综合素质与提高知识技能的终身学习网络平台

 找回密码
 立即注册

QQ登录

只需一步,快速开始

微信登录

微信扫码,快速开始

[试卷分析] 湖北省2023九年级数学下册期中重点试卷(含答案解析)

[复制链接]

湖北省2023九年级数学下册期中重点试卷(含答案解析)

一、选择题(每小题3分,共30分)

1.下列四个实数中,绝对值最小的数是()A.﹣5 B.C.1 D.4

2.稀土元素有独特的性能和广泛的应用,我国稀土资源的总储藏量约为1 050 000 000吨,是全世界稀土资源最丰富的国家.将1 050 000 000吨用科学记数法表示为()

A. 1.05×2023吨B .1.05×109吨 C. 10.5×108吨 D. 0.105×2023吨

3..对于实数 ,我们规定 表示不大于 的最大整数,例如 , , ,若 ,则 的取值可以是( ).A.40B.45C.51D.56

4.下列几何体中,其主视图不是中心对称图形的是( )

5.某班派9名同学参加拔河比赛,他们的体重分别是(单位:千克):67,59,61,59,63,57,70,59,65这组数据的众数和中位数分别是()A.59,63B.59,61C.59,59D.57,61

6.已知O为圆锥的顶点,M为圆锥底面上一点,点P在OM上.一只蜗牛从P点出发,绕圆锥侧面爬行,回到P点时所爬过的最短路线的痕迹如左图所示.若沿OM将圆锥侧面剪开并展开,所得侧面展开图是()

7.如图,在△ABC中,点D、E分别在AB、AC上,DE∥BC,若AD:AB=3: 4,AE=6,则AC等于()

A. 3 B. 4 C. 6 D. 8

8.二次函数 的图象如图所示,则一次函数 与反比例函数 在同一坐标系内的图象大致为( ).

9.如图,正方形ABCD中,点E、F分别在BC、CD上,△AEF是等边三角形,连接AC交EF于G,下列结论:①BE=DF,②∠DAF=15°,③AC垂直平分EF,④BE+DF=EF,⑤S△CEF=2S△ABE.其中正确结论有()个.A. 2 B. 3 C. 4 D. 5

10.如图在Rt△ABC中,∠ACB=90°,∠BAC=30°,AB=2,D是AB边上的一个动点(不与点A、B重合),过点D作CD的垂线交射线CA于点E.设AD=x,CE=y,则下列图象中,能表示 与x的函数关系图象大致是()

二、填空题(3×6=18)

11.(3分)分解因式:a3b﹣9ab3=ab(a+3b)(a﹣3b).

12.(3分)在义乌市中小学生“人人会乐器”演奏比赛中,某班10名学生成绩统计如图所示,则这10名学生成绩的中位数是90分,众数是90分.

13.(3分)若二次函数 的图象过A(-1,y1)、B(2,y2)、C( ,y3)三点,则y1、y2、y3大小关系是 .

14.(3分)已知:如图是斜边为10的一个等腰直角三角形与两个半径为5的扇形的重叠情形,其中等腰直角三角形顶角平分线与两扇形相切,则图中阴影部分面积的和是 .

15.(3分)在平面直角坐标系中,正方形ABCD的位置如右图所示,点A的坐标为(1,0),点D的坐标为(0,2).延长CB交x轴于点A1,作正方形A1B1C1C;延长C1B1交x轴于点A2,作正方形A2B2C2C1,…按这样的规律进行下去,第2023个正方形的面积为 .

16.(3分)如图,在平面直角坐标系xOy中,点A在第一象限,点B在x轴的正半轴上,∠OAB=90°.⊙P1是△OAB的内切圆,且P1的坐标为(3,1).OA的长为 ,OB的长为 ;点C在OA的延长线上,CD∥AB交x轴于点D.将⊙P1沿水平方向向右平移2个单位得到⊙P2,将⊙P2沿水平方向向右平移2个单位得到⊙P3,按照同样的方法继续操作,依次得到⊙P4,……⊙Pn.若⊙P1,⊙P2,……⊙Pn均在△OCD的内部,且⊙Pn恰好与CD相切,则此时OD的长为 .(用含n的式子表示)

三、解答题(本题有9个小题,共72分)

17.(7分))计算:

18.(7分)先化简,再求值: ,其中 .

19.(8分)(如图,点A,B,C分别是⊙O上的点,∠B=60°,AC=3,CD是⊙O的直径,P是CD延长线上的一点,且AP=AC.(1)求证:AP是⊙O的切线;(2)求PD的长.

20.(8分)若 ,求x,y.

21.(8分)一个不透明的袋中装有红、黄、白三种颜色球共100个,它们除颜色外都相同,其中黄球个数是白球个数的2倍少5个.已知从袋中摸出一个球是红球的概率是 .

(1)求袋中红球的个数;

(2)求从袋中摸出一个球是白球的概率;

(3)取走10个球(其中没有红球)后,求从剩余的球中摸出一个球是红球的概率.

22.(8分)在建筑楼梯时,设计者要考虑楼梯的安全程度,如图(1),虚线为楼梯的倾斜度,斜度线与地面的夹角为倾角θ,一般情况下,倾角越小,楼梯的安全程度越高;如图(2)设计者为了提高楼梯的安全程度,要把楼梯的倾角θ1减至θ2,这样楼梯所占用地板的长度由d1增加到d2,已知d1=4米,∠θ1=40°,∠θ2=36°,楼梯占用地板的长度增加率多少米?(计算结果精确到0.01米,参考数据:tan40°=0.839,tan36°=0.727)

23.(8分)王亮同学善于改进学习方法,他发现对解题过程进行回顾反思,效果会更好.某一天他利用了30分钟时间进行自主学习.假设他用于解题的时间x(单位:分钟)与学习收益量)y的关系如图1所示,用于回顾反思的时间x(单位:分钟)与学习收益量y的关系如图2所示(其中OA是抛物线的一部分,A为抛物线的顶点),且用于回顾反思的时间不超过用于解题的时间.

(1)求王亮解题的学习收益量y与用于解题的时间x之间的函数关系式,并写出自变量x的取值范围;

(2)求王亮回顾反思的学习收益量y与用于回顾反思的时间x之间的函数关系式;

(3)王亮如何分配解题和回顾反思的时间,才能使这30分钟的学习收益总量最大?

(注:学习收益总量=解题的学习收益量+回顾反思的学习收益量)

24.(8分)在矩形ABCD中, 点F在AD延长线上,且DF= DC, M为AB边上一点, N为MD的中

点, 点E在直线CF上(点E、C不重合).(1)如图1, 若AB=BC, 点M、A重合, E为CF的中点,试探究BN与NE的位置关系及 的值, 并证明你的结论;(2)如图2,且若AB=BC, 点M、A不重合, BN=NE,你在(1)中得到的两个结论是否成立, 若成立,加以证明; 若不成立, 请说明理由; (3)如图3,若点M、A不重合,BN=NE,你在(1)中得到的结论两个是否成立, 请直接写出你的结论

25.(10分)已知抛物线F:y=ax2+bx+c的顶点为P.

(Ⅰ)当a=1,b=﹣2,c=﹣3,求该抛物线与x轴公共点的坐标;

(Ⅱ)设抛物线F:y=ax2+bx+c与y轴交于点A,过点P作PD⊥x轴于点D.平移该抛物线使其经过点A、D,得到抛物线F:y=a′x2+b′x+c′(如图所示).若a、b、c满足了b2=2ac,求b:b′的值;

(Ⅲ)若a=3,b=2,且当﹣1<x<1时,抛物线F与x轴有且只有一个公共点,求c的取值范围.

回复

使用道具 举报

小黑屋/人人终身学习知识网~是各类综合知识资源信息分享,提升综合素质与提高知识技能的终身学习网络平台

Powered by 5wangxiao

© 2007-2021 5wangxiao.Com Inc.

快速回复 返回顶部 返回列表