人人终身学习知识网~是各类综合知识资源信息分享,提升综合素质与提高知识技能的终身学习网络平台

 找回密码
 立即注册

QQ登录

只需一步,快速开始

微信登录

微信扫码,快速开始

[试卷分析] 初一数学《2.2 整式的加减》检测试卷(人教版)

[复制链接]

人教版七上数学2.2整式的加减同步试卷(附解析)

5分钟训练(预习类训练,可用于课前)

1.合并同类项:3x2y-4x2y=__________.

答案:-x2y

2.下列各式运算正确的是()

A.3a+2b=5abB.5y2-3y2=2

C.2ab-ab=abD.3x2y-5x2y=2x2y

答案:C

3.下列各式加括号后正确的是()

A.a+b-c=a-(b-c)B.a-b+c=a-(b-c)

C.a-b-c=a-(b-c)D.a+b+c=a+(b-c)

思路解析:添括号法则中注意括号前是符号的情况:再把括号里的每一项都改变符号.

答案:B

10分钟训练(强化类训练,可用于课中)

1.合并同类项:3a2b-5a2b+9a2b.

解:3a2b-5a2b+9a2b=(3-5+9)a2b=7a2b.

2.化简:xy-x2y2-xy-x2y2.

思路分析:一般在合并前,先画出同类项:

解:xy-x2y2-xy-x2y2=(1-)xy+(--)x2y2=xy-x2y2.

3.已知4am-3b5与3a2b2n+3的和仍是一个单项式,则m和n的值分别是多少?

思路分析:本题考查的是单项式和合并同类项的概念,要想两个单项式的和仍是单项式,这两个单项式一定是同类项才行,否则不能合并,因此根据同类项的概念可得到一个关于m、n的简单方程,由此解出m、n.

解:由m-3=2,知m=5;

由5=2n+3,知n=1.

4.先化简,再求值.

5x2-(3y2+5x2)+(4y2+7xy),其中x=-1,y=1.

思路分析:本题考查的是整式的加减运算,应先去括号再合并同类项,最后代入求值.

解:5x2-(3y2+5x2)+(4y2+7xy)

=5x2-3y2-5x2+4y2+7xy

=y2+7xy.

当x=-1,y=1时,y2+7xy=-6.

5.已知a=9ax2-6xy-y2,b=6x2-xy+4y2,且a、b是关于x、y的多项式,若a-3b的值不含x2项,求a的值.

思路分析:此题应先进行整式的加减运算.不含x2项的意思是x2的系数是0,由此算出a的值.

解:a-3b=(9ax2-6xy-y2)-3(6x2-xy+4y2)

=9ax2-6xy-y2-18x2+3xy-12y2

=(9a-18)x2+(-6+3)xy+(-1-12)y2

=(9a-18)x2-3xy-13y2,

因为不含x2项,所以9a-18=0,a=2.

快乐时光

老师:“从今天起,我给你补课,以后不要再把时间浪费在玩扑克牌上了.”

学生:“是.”

老师:“方程x-10=3的解是什么?”

学生:“移项,得x=3+10,即x=老K!”

30分钟训练(巩固类训练,可用于课后)

1.如果M和N都是3次多项式,则M+N一定是()

A.3次多项式B.6次多项式

C.次数不低于3的多项式或单项式D.次数不高于3的多项式或单项式

思路解析:整式的加减运算实质是合并同类项,字母的次数不会改变,若最高次项合并为0,结果的次数就会减少.

答案:D

2.如果数轴上表示a、b两数的点的位置如图2-2所示,那么|a-b|+|a+b|的计算结果是()

图2-2

A.2aB.-2a

C.0D.2b

思路解析:根据数轴给定的a、b的大小关系去绝对值|a-b|+|a+b|=b-a-a-b.

答案:B

3.()+3x2-5x+2y=x2-4x.

思路解析:可用加减互逆的运算性质.

答案:-2x2+x-2y

4.单项式-3x6y3n与9x2my12是同类项,那么m、n的值分别是__________.

思路解析:同类项的定义,字母相同,相同字母的次数也分别相同.6=2m,3n=12.

答案:3、4

5.找出下列单项式中的同类项,并把它们合并.

5a2b,7xy2z,-6ab,-4xym,2ab2,ab,11xy2z,3xyz,8a2b.

思路分析:判定同类项的标准是定义.

解:5a2b和8a2b是同类项,合并后等于13a2b;7xy2z和11xy2z是同类项,合并后等于18xy2z;-6ab和ab是同类项,合并后等于-ab.

6.老师出了这样一道题“当a=56,b=-28时,计算(2a3-3a2b-2ab2)-(a3-2ab2+b3)+(3a2b-a3-b3)的值”.但在计算过程中,有一位同学错把“a=56”写成“a=-56”,而另一位同学错把“b=-28”写成“b=-2.8”,可他俩的运算结果却都是正确的,请你找出其中的原因.

思路分析:类似整式计算求值问题一般先化简,有时化简的结果为一个常数,则式子的值与字母的取值无关.

解:因为(2a3-3a2b-2ab2)-(a3-2ab2+b3)+(3a2b-a3-b3)的化简结果等于0,和a、b的值无关.所以不管a、b取什么样的值,都不会产生影响.

7.计算:

(1)(x2-20x+10y)-(x2-13x+24y);

(2)(xy-y+)-(xy-x+);

(3)2(x2-2x+4)-3(-5+x2);

(4)-2a+4(-3a+2b)-3(a-2b+3c).

思路分析:熟练掌握去括号法则与合并同类项法则.

解:(1)3x2-7x-14y;

(2)x-y;

(3)-x2-4x+23;

(4)-17a+14b-9c.

8.A和B两家公司都准备向社会招聘人才,两家公司招聘条件基本相同,只有工资待遇有如下差异:A公司年薪20230元,从第二年开始每年加工龄工资200元,B公司半年薪2023元,每半年加工龄工资50元,从经济收入的角度考虑的话,选择哪家公司有利?

思路分析:计算出第一年、第二年及第n年在A公司或在B公司工作的收入并不困难:

A公司B公司

第一年202320230+2023=20230

第二年202320230+2023=20230

不过逐年计算每家公司的收入过于麻烦,所以应借助于字母n,计算第n年在每个公司的收入,并进行比较,才能使对问题的讨论具有一般性,才能保证结论是正确的.

解:第n年在A公司收入为20230+200×(n-1);

第n年在B公司收入为[2023+100(n-1)]+[2023+100(n-1)+50]=20230+200(n-1).

因为20230+200(n-1)-[20230+200(n-1)]=-50,所以选择B公司有利.

回复

使用道具 举报

小黑屋/人人终身学习知识网~是各类综合知识资源信息分享,提升综合素质与提高知识技能的终身学习网络平台

Powered by 5wangxiao

© 2007-2021 5wangxiao.Com Inc.

快速回复 返回顶部 返回列表