尽快地掌握学习知识迅速提高学习能力,由数学网为您提供的高二上学期数学教学计划模板,希望给您带来启发! 教学目标 (1)掌握由一点和斜率导出直线方程的方法,掌握直线方程的点斜式、两点式和直线方程的一般式,并能根据条件熟练地求出直线的方程. (2)理解直线方程几种形式之间的内在联系,能在整体上把握直线的方程. (3)掌握直线方程各种形式之间的互化. (4)通过直线方程一般式的教学培养学生全面、系统、周密地分析、讨论问题的能力. (5)通过直线方程特殊式与一般式转化的教学,培养学生灵活的思维品质和辩证唯物主义观点. (6)进一步理解直线方程的概念,理解直线斜率的意义和解析几何的思想方法. 教学建议 1.教材分析 (1)知识结构 由直线方程的概念和直线斜率的概念导出直线方程的点斜式;由直线方程的点斜式分别导出直线方程的斜截式和两点式;再由两点式导出截距式;最后都可以转化归结为直线的一般式;同时一般式也可以转化成特殊式. ( 不同时为0)的对应关系及其证明. 教学用具:计算机 教学方法:启发引导法,讨论法 教学过程: 下面给出教学实施过程设计的简要思路: 教学设计思路: (一)引入的设计 前边学习了如何根据所给条件求出直线方程的方法,看下面问题: 问:说出过点 ,属于二元一次方程,因为未知数有两个,它们的最高次数为一次. 肯定学生回答,并纠正学生中不规范的表述.再看一个问题: 问:求出过点 的直线的方程,并观察方程属于哪一类,为什么? 答:直线方程是 肯定学生回答后强调“也是二元一次方程,都是因为未知数有两个,它们的最高次数为一次”. 启发:你在想什么(或你想到了什么)?谁来谈谈?各小组可以讨论讨论. 学生纷纷谈出自己的想法,教师边评价边启发引导,使学生的认识统一到如下问题: 【问题1】“任意直线的方程都是二元一次方程吗?” (二)本节主体内容教学的设计 这是本节课要解决的第一个问题,如何解决?自己先研究研究,也可以小组研究,确定解决问题的思路. 学生或独立研究,或合作研究,教师巡视指导. 经过一定时间的研究,教师组织开展集体讨论.首先让学生陈述解决思路或解决方案: 思路一:… 思路二:… …… 教师组织评价,确定最优方案(其它待课下研究)如下: 按斜率是否存在,任意直线 存在或不存在. 当 的截距 的方程可表示为 不存在时,直线 形式的方程,它是二元一次方程吗? 学生有的认为是有的认为不是,此时教师引导学生,逐步认识到把它看成二元一次方程的合理性: 平面直角坐标系中直线 解的形式也是二元方程的解的形式,因此把它看成形如 、 的形式,准确地说应该是“要么形如 这样的方程”. 同学们注意:这样表达起来是不是很啰嗦,能不能有一个更好的表达? 学生们不难得出:二者可以概括为统一的形式. 这样上边的结论可以表述如下: 在平面直角坐标系中,对于任何一条直线,都有一条表示这条直线的形如 、 (其中 不同时为0)的二元一次方程都表示一条直线吗? 不难看出上边的结论只是直线与方程相互关系的一个方面,这个问题是它的另一方面.这是显然的吗?不是,因此也需要像刚才一样认真地研究,得到明确的结论.那么如何研究呢? 师生共同讨论,评价不同思路,达成共识: 回顾上边解决问题的思路,发现原路返回就是非常好的思路,即方程 、 是否为0恰好对应斜率 时,方程可化为 、在 的直线. (2)当 、 ,方程可化为 轴垂直的直线. 因此,得到结论: 在平面直角坐标系中,任何形如 、 (其中 不同时为0)称作直线方程的一般式是合理的. 【动画演示】 演示“直线各参数.gsp”文件,体会任何二元一次方程都表示一条直线. 至此,我们的第二个问题也圆满解决,而且我们还发现上述两个问题其实是一个大问题的两个方面,这个大问题揭示了直线与二元一次方程的对应关系,同时,直线方程的一般形式是对直线特殊形式的抽象和概括,而且抽象的层次越高越简洁,我们还体会到了特殊与一般的转化关系. (三)练习巩固、总结提高、板书和作业等环节的设计在此从略 数学网为大家编辑的高二上学期数学教学计划模板,大家仔细品味了吗?祝大家学期生活愉快。 |