数学网为大家准备了九年级上册数学教学计划格式,供大家参考,希望能帮助到大家。 教学准备 1. 教学目标 知识技能 1.能根据具体问题中的数量关系,列出一元二次方程,体会方程是刻画现实世界的一个有效的数学模型. 2.能根据具体问题的实际意义,检验结果是否合理. 过程方法 经历将实际问题抽象为代数问题的过程,探索问题中的数量关系,并能运用一元二次方程对之进行描述。 情感态度与价值观 通过用一元二次方程解决身边的问题,体会数学知识应用的价值,提高学生学习数学的兴趣,了解数学对促进社会进步和发展人类理性精神的作用. 2. 教学重点/难点 教学重点:列一元二次方程解有关传播问题的应用题 教学难点:发现传播问题中的等量关系 3. 教学用具 制作课件,精选习题 4. 标签 教学过程 一、导入新课 师:同学们好,我们已经学过用一元一次方程来解决实际问题,你还记得列一元一次方程解决实际问题的步骤吗? 生:审题、设未知数、找等量关系、列方程、解方程,最后答题. 试:同一元一次方程、二元一次方程(组)等一样,一元二次方程也可以作为反映某些实际问题中数量关系的数学模型.这一节我们就讨论如何利用一元二次方程解决实际问题. 二、探索新知 【问题情境】 有一人患了流感,经过两轮传染后,有121人患了流感,每轮传染中平均一个人传染了几个人? 【分析】 (1)本题中有哪些数量关系? (2)如何理解“两轮传染”? (3)如何利用已知的数量关系选取未知数并列出方程? (4)能否把方程列得更简单,怎样理解? (5)解方程并得出结论,对比几种方法各有什么特点? 【解答】 设每轮传染中平均一个人传染了x个人,则依题意第一轮传染后有x+1人患了流感,第二轮传染后有x(1+x)人患了流感。于是可列方程: 1+x+x(1+x)=121 解方程得x1=10,x2=-12(不合题意舍去) 因此每轮传染中平均一个人传染了10个人. 【思考】 如果按这样的传播速度,三轮传染后有多少人患了流感? 【活动方略】 教师提出问题 学生分组,分别按问题(3)中所列的方程来解答,选代表展示解答过程,并讲解解题过程和应注意问题. 【设计意图】 使学生通过多种方法解传播问题,验证多种方法的正确性;通过解题过程的对比,体会对已知数量关系的适当变形对解题的影响,丰富解题经验. 三、例题分析 例1、某种植物的主干长出若干数目的支干,每个支干又长出同样数目的小分支、主干,如果支干和小分支的总数是91,每个支干长出多少小分支? 解:设每个支干长出x个小分支,则 1+x+xx=91,即x2+x-90=0. 解得x1=9,x2=-10(不合题意,舍去) 答:每个支干长出9个小分支. 例2、参加足球联赛的每两队之间都进行了两次比赛(双循环比赛),共要比赛90场,共有多少个队参加了比赛? 例3、学校组织了一次篮球单循环比赛(每两队之间都进行了一次比赛),共进行了15场比赛,那么有几个球队参加了这次比赛? 【分析】 (1)两题中有哪些数量关系? (2)由这些数量关系还能得到什么新的结论?你想如何利用这些数量关系?为什么?如何列方程? (3)对比两题,它们有什么联系与区别? 【活动方略】 教师活动:操作投影,将例题显示,组织学生讨论. 学生活动:合作交流,讨论解答。 【设计意图】 进一步提升学生在活动1中的学习效果,使学生充分体会传播问题,培养学生对传播问题的解题能力。 四、当堂训练 1.生物兴趣小组的学生,将自己收集的标本向本组其他成员各赠送一件,全组共互赠了182件,如果全组有x名同学,那么根据题意列出的方程是( ) A.x(x+1)=182 B.x(x-1)=182 C.2x(x+1)=182 D.x(1-x)=182×2 2.一个小组若干人,新年互送贺卡,若全组共送贺卡72张,则这个小组共( ). A.12人 B.18人 C.9人 D.10人 【活动方略】 学生独立思考、独立解题. 教师巡视、指导,并选取两名学生上台书写解答过程(或用投影仪展示学生的解答过程) 【设计意图】 检查学生对所学知识的掌握情况. 课堂小结 1、用“传播问题”建立数学模型,并利用它解决一些具体问题. 2.解一元二次方程的一般步骤:一审、二设、三列、四解、五验(检验方程的解是否符合题意,将不符合题意的解舍去)、六答. 板书 21.3.1 实际问题与一元二次方程 一、复习 二、新知探究 设每轮传染中平均一个人传染了x个人,则依题意第一轮传染后有x+1人患了流感,第二轮传染后有x(1+x)人患了流感。于是可列方程: 1+x+x(1+x)=121 解方程得x1=10,x2=-12(不合题意舍去) 因此每轮传染中平均一个人传染了10个人. 三、例题分析 例1、例2、例3 四、课堂小结 五、当堂训练 六、小结 上文为大家推荐的九年级上册数学教学计划格式大家还满意吗?祝大家学习进步。 |