成绩的提高是同学们提高总体学习成绩的重要途径,大家一定要在平时的练习中不断积累,小编为大家准备了必备的初二上册数学期中复习知识点总结:一次函数,希望同学们不断取得进步! (1)一次函数 如果y=kx+b(k、b是常数,k≠0),那么y叫做x的一次函数. 特别地,当b=0时,一次函数y=kx+b成为y=kx(k是常数,k≠0),这时,y叫做x的正比例函数. (2)一次函数的图象 一次函数y=kx+b的图象是一条经过(0,b)点和 点的直线. 特别地,正比例函数图象是一条经过原点的直线. 需要说明的是,在平面直角坐标系中,“直线”并不等价于“一次函数y=kx+b(k≠0)的图象”,因为还有直线y=m(此时k=0)和直线x=n(此时k不存在),它们不是一次函数图象. (3)一次函数的性质 当k0时,y随x的增大而增大;当k0时,y随x的增大而减小. 直线y=kx+b与y轴的交点坐标为(0,b),与x轴的交点坐标为 . (4)用函数观点看方程(组)与不等式 ①任何一元一次方程都可以转化为ax+b=0(a,b为常数,a≠0)的形式,所以解一元一次方程可以转化为:一次函数y=kx+b(k,b为常数,k≠0),当y=0时,求相应的自变量的值,从图象上看,相当于已知直线y=kx+b,确定它与x轴交点的横坐标. ②二元一次方程组 对应两个一次函数,于是也对应两条直线,从“数”的角度看,解方程组相当于考虑自变量为何值时两个函数值相等,以及这两个函数值是何值;从“形”的角度看,解方程组相当于确定两条直线的交点的坐标. ③任何一元一次不等式都可以转化ax+b0或ax+b0(a、b为常数,a≠0)的形式,解一元一次不等式可以看做:当一次函数值大于0或小于0时,求自变量相应的取值范围. 以上就是数学网为大家整理的必备的初二上册数学期中复习知识点总结:一次函数,怎么样,大家还满意吗?希望对大家的学习有所帮助,同时也祝大家学习进步,考试顺利! |