数学是利用符号语言研究数量、结构、变化以及空间模型等概念的一门学科。精品小编准备了高一数学必修一第一章知识点,希望你喜欢。 1、函数定义域、值域求法综合 2.、函数奇偶性与单调性问题的解题策略 3、恒成立问题的求解策略 4、反函数的几种题型及方法 5、二次函数根的问题一题多解 指数函数y=a^x a^a*a^b=a^a+b(a0,a、b属于Q) (a^a)^b=a^ab(a0,a、b属于Q) (ab)^a=a^a*b^a(a0,a、b属于Q) 指数函数对称规律: 1、函数y=a^x与y=a^-x关于y轴对称 2、函数y=a^x与y=-a^x关于x轴对称 3、函数y=a^x与y=-a^-x关于坐标原点对称 对数函数y=loga^x 如果,且,,,那么: ○1 ○2 -; ○3 . 注意:换底公式 (,且;,且;). 幂函数y=x^a(a属于R) 1、幂函数定义:一般地,形如 的函数称为幂函数,其中为常数. 2、幂函数性质归纳. (1)所有的幂函数在(0,+)都有定义并且图象都过点(1,1); (2)时,幂函数的图象通过原点,并且在区间上是增函数.特别地,当时,幂函数的图象下凸;当时,幂函数的图象上凸; (3)时,幂函数的图象在区间上是减函数.在第一象限内,当从右边趋向原点时,图象在轴右方无限地逼近轴正半轴,当趋于时,图象在轴上方无限地逼近轴正半轴. 方程的根与函数的零点 1、函数零点的概念:对于函数,把使成立的实数叫做函数的零点。 2、函数零点的意义:函数的零点就是方程实数根,亦即函数的图象与轴交点的横坐标。 即:方程有实数根函数的图象与轴有交点函数有零点. 3、函数零点的求法: ○1 (代数法)求方程的实数根; ○2 (几何法)对于不能用求根公式的方程,可以将它与函数的图象联系起来,并利用函数的性质找出零点. 4、二次函数的零点: 二次函数. (1)△0,方程有两不等实根,二次函数的图象与轴有两个交点,二次函数有两个零点. (2)△=0,方程有两相等实根,二次函数的图象与轴有一个交点,二次函数有一个二重零点或二阶零点. (3)△0,方程无实根,二次函数的图象与轴无交点,二次函数无零点. 高一数学必修一第一章知识点就为大家介绍到这里,希望对你有所帮助。 |