期中考试马上就要到来了,大家复习好了吗?数学网高中频道小编整理了高一数学期中必备知识点总结:集合,供参考! 一.知识归纳: 1.集合的有关概念。 1)集合(集):某些指定的对象集在一起就成为一个集合(集).其中每一个对象叫元素 注意:①集合与集合的元素是两个不同的概念,教科书中是通过描述给出的,这与平面几何中的点与直线的概念类似。 ②集合中的元素具有确定性(a?A和a?A,二者必居其一)、互异性(若a?A,b?A,则ab)和无序性({a,b}与{b,a}表示同一个集合)。 ③集合具有两方面的意义,即:凡是符合条件的对象都是它的元素;只要是它的元素就必须符号条件 2)集合的表示方法:常用的有列举法、描述法和图文法 3)集合的分类:有限集,无限集,空集。 4)常用数集:N,Z,Q,R,N* 2.子集、交集、并集、补集、空集、全集等概念。 1)子集:若对xA都有xB,则A B(或A B); 2)真子集:A B且存在x0B但x0 A;记为A B(或 ,且 ) 3)交集:AB={x| xA且xB} 4)并集:AB={x| xA或xB} 5)补集:CUA={x| x A但xU} 注意:①? A,若A?,则? A ; ②若 , ,则 ; ③若 且 ,则A=B(等集) 3.弄清集合与元素、集合与集合的关系,掌握有关的术语和符号,特别要注意以下的符号:(1) 与 、?的区别;(2) 与 的区别;(3) 与 的区别。 4.有关子集的几个等价关系 ①AB=A A B;②AB=B A B;③A B C uA C uB; ④ACuB = 空集 CuA B;⑤CuAB=I A B。 5.交、并集运算的性质 ①AA=A,A? = ?,AB=B②AA=A,A? =A,AB=B ③Cu (AB)= CuACuB,Cu (AB)= CuA 6.有限子集的个数:设集合A的元素个数是n,则A有2n个子集,2n-1个非空子集,2n-2个非空真子集。 二.例题讲解: 【例1】已知集合M={x|x=m+ ,mZ},N={x|x= ,nZ},P={x|x= ,pZ},则M,N,P满足关系 A) M=N P B) M N=P C) M N P D) N P M 分析一:从判断元素的共性与区别入手。 解答一:对于集合M:{x|x= ,m对于集合N:{x|x= ,nZ} 对于集合P:{x|x= ,pZ},由于3(n-1)+1和3p+1都表示被3除余1的数,而6m+1表示被6除余1的数,所以M N=P,故选B。 分析二:简单列举集合中的元素。 解答二:M={, ,},N={, , , ,},P={, , ,},这时不要急于判断三个集合间的关系,应分析各集合中不同的元素。 = N, N,M N,又 = M,M N, 变式:设集合 , ,则( B ) A.M=N B.M N C.N M D. 解: 当 时,2k+1是奇数,k+2是整数,选B 【例2】定义集合A*B={x|xA且x B},若A={1,3,5,7},B={2,3,5},则A*B的子集个数为 A)1 B)2 C)3 D)4 分析:确定集合A*B子集的个数,首先要确定元素的个数,然后再利用公式:集合A={a1,a2,,an}有子集2n个来求解。 解答:∵A*B={x|xA且x B}, A*B={1,7},有两个元素,故A*B的子集共有22个。选D。 变式1:已知非空集合M {1,2,3,4,5},且若aM,则6?aM,那么集合M的个数为 A)5个 B)6个 C)7个 D)8个 变式2:已知{a,b} A {a,b,c,d,e},求集合A. 解:由已知,集合中必须含有元素a,b. 集合A可能是{a,b},{a,b,c},{a,b,d},{a,b,e},{a,b,c,d},{a,b,c,e},{a,b,d,e}. 评析 本题集合A的个数实为集合{c,d,e}的真子集的个数,所以共有 个 . 【例3】已知集合A={x|x2+px+q=0},B={x|x2?4x+r=0},且AB={1},AB={?2,1,3},求实数p,q,r的值。 解答:∵AB={1} 1B 12?41+r=0,r=3. B={x|x2?4x+r=0}={1,3}, ∵AB={?2,1,3},?2 B, ?2A ∵AB={1} 1A 方程x2+px+q=0的两根为-2和1, 变式:已知集合A={x|x2+bx+c=0},B={x|x2+mx+6=0},且AB={2},AB=B,求实数b,c,m的值. 解:∵AB={2} 1B 22+m?2+6=0,m=-5 B={x|x2-5x+6=0}={2,3} ∵AB=B 又 ∵AB={2} A={2} b=-(2+2)=4,c=22=4 b=-4,c=4,m=-5 【例4】已知集合A={x|(x-1)(x+1)(x+2)0},集合B满足:AB={x|x-2},且AB={x|1 分析:先化简集合A,然后由AB和AB分别确定数轴上哪些元素属于B,哪些元素不属于B。 解答:A={x|-21}。由AB={x|1-2}可知[-1,1] B,而(-,-2)B=ф。 综合以上各式有B={x|-15} 变式1:若A={x|x3+2x2-8x0},B={x|x2+ax+b0},已知AB={x|x-4},A,求a,b。(答案:a=-2,b=0) 变式2:设M={x|x2-2x-3=0},N={x|ax-1=0},若MN=N,求所有满足条件的a的集合。 解答:M={-1,3} , ∵MN=N, N M ①当 时,ax-1=0无解,a=0 ② 综①②得:所求集合为{-1,0, } 【例5】已知集合 ,函数y=log2(ax2-2x+2)的定义域为Q,若P,求实数a的取值范围。 分析:先将原问题转化为不等式ax2-2x+20在 有解,再利用参数分离求解。 解答:(1)若 , 在 内有有解 令 当 时, 所以a-4,所以a的取值范围是 变式:若关于x的方程 有实根,求实数a的取值范围。 三.随堂演练 选择题 1. 下列八个关系式①{0}= ② =0 ③ { } ④ { } ⑤{0} ⑥0 ⑦ {0} ⑧ { }其中正确的个数 (A)4 (B)5 (C)6 (D)7 2.集合{1,2,3}的真子集共有 (A)5个 (B)6个 (C)7个 (D)8个 3.集合A={x } B={ } C={ }又 则有 (A)(a+b) A (B) (a+b) B (C)(a+b) C (D) (a+b) A、B、C任一个 4.设A、B是全集U的两个子集,且A B,则下列式子成立的是 (A)CUA CUB (B)CUA CUB=U (C)A CUB= (D)CUA B= 5.已知集合A={ }, B={ }则A = (A)R (B){ } (C){ } (D){ } 6.下列语句:(1)0与{0}表示同一个集合; (2)由1,2,3组成的集合可表示为 {1,2,3}或{3,2,1}; (3)方程(x-1)2(x-2)2=0的所有解的集合可表示为 {1,1,2}; (4)集合{ }是有限集,正确的是 (A)只有(1)和(4) (B)只有(2)和(3) (C)只有(2) (D)以上语句都不对 7.设S、T是两个非空集合,且S T,T S,令X=S 那么SX= (A)X (B)T (C) (D)S 8设一元二次方程ax2+bx+c=0(a0)的根的判别式 ,则不等式ax2+bx+c 0的解集为 (A)R (B) (C){ } (D){ } 填空题 9.在直角坐标系中,坐标轴上的点的集合可表示为 10.若A={1,4,x},B={1,x2}且A B=B,则x= 11.若A={x } B={x },全集U=R,则A = 12.若方程8x2+(k+1)x+k-7=0有两个负根,则k的取值范围是 13设集合A={ },B={x },且A B,则实数k的取值范围是。 14.设全集U={x 为小于20的非负奇数},若A (CUB)={3,7,15},(CUA) B={13,17,19},又(CUA) (CUB)= ,则A B= 解答题 15(8分)已知集合A={a2,a+1,-3},B={a-3,2a-1,a2+1}, 若A B={-3},求实数a。 16(12分)设A= , B= , 其中x R,如果A B=B,求实数a的取值范围。 四.习题答案 选择题 1 2 3 4 5 6 7 8 C C B C B C D D 填空题 9.{(x,y) } 10.0, 11.{x ,或x 3} 12.{ } 13.{ } 14.{1,5,9,11} 解答题 15.a=-1 16.提示:A={0,-4},又A B=B,所以B A (Ⅰ)B= 时, 4(a+1)2-4(a2-1)0,得a-1 (Ⅱ)B={0}或B={-4}时, 0 得a=-1 (Ⅲ)B={0,-4}, 解得a=1 综上所述实数a=1 或a -1 高一数学期中必备知识点总结:集合就分享到这里了,希望大家认真复习,备战期中考试! |