本章的主要内容是图形的初步认识,从生活周围熟悉的物体入手,对物体的形状的认识从感性逐步上升到抽象的几何图形。通过从不同方向看立体图形和展开立体图形,初步认识立体图形与平面图形的联系。在此基础上,认识一些简单的平面图形直线、射线、线段和角。 一、目标与要求 1.能从现实物体中抽象得出几何图形,正确区分立体图形与平面图形;能把一些立体图形的问题,转化为平面图形进行研究和处理,探索平面图形与立体图形之间的关系。 2.经历探索平面图形与立体图形之间的关系,发展空间观念,培养提高观察、分析、抽象、概括的能力,培养动手操作能力,经历问题解决的过程,提高解决问题的能力。 3.积极参与教学活动过程,形成自觉、认真的学习态度,培养敢于面对学习困难的精神,感受几何图形的美感;倡导自主学习和小组合作精神,在独立思考的基础上,能从小组交流中获益,并对学习过程进行正确评价,体会合作学习的重要性。 二、知识框架 四、难点 立体图形与平面图形之间的转化是难点; 探索点、线、面、体运动变化后形成的图形是难点; 画一条线段等于已知线段的尺规作图方法,正确比较两条线段长短是难点。 五、知识点、概念总结 1.几何图形:点、线、面、体这些可帮助人们有效的刻画错综复杂的世界,它们都称为几何图形。从实物中抽象出的各种图形统称为几何图形。有些几何图形的各部分不在同一平面内,叫做立体图形。有些几何图形的各部分都在同一平面内,叫做平面图形。虽然立体图形与平面图形是两类不同的几何图形,但它们是互相联系的。 2.几何图形的分类:几何图形一般分为立体图形和平面图形。 13.角的种类:角的大小与边的长短没有关系;角的大小决定于角的两条边张开的程度,张开的越大,角就越大,相反,张开的越小,角则越小。在动态定义中,取决于旋转的方向与角度。角可以分为锐角、直角、钝角、平角、周角、负角、正角、优角、劣角、0角这10种。以度、分、秒为单位的角的度量制称为角度制。此外,还有密位制、弧度制等。 锐角:大于0,小于90的角叫做锐角。 直角:等于90的角叫做直角。 钝角:大于90而小于180的角叫做钝角。 平角:等于180的角叫做平角。 优角:大于180小于360叫优角。 劣角:大于0小于180叫做劣角,锐角、直角、钝角都是劣角。 周角:等于360的角叫做周角。 负角:按照顺时针方向旋转而成的角叫做负角。 正角:逆时针旋转的角为正角。 0角:等于零度的角。 余角和补角:两角之和为90则两角互为余角,两角之和为180则两角互为补角。等角的余角相等,等角的补角相等。 对顶角:两条直线相交后所得的只有一个公共顶点且两个角的两边互为反向延长线,这样的两个角叫做互为对顶角。两条直线相交,构成两对对顶角。互为对顶角的两个角相等。 还有许多种角的关系,如内错角,同位角,同旁内角(三线八角中,主要用来判断平行)! 14.几何图形分类 (1)立体几何图形可以分为以下几类: 第一类:柱体; 包括:圆柱和棱柱,棱柱又可分为直棱柱和斜棱柱,棱柱体按底面边数的多少又可分为三棱柱、四棱柱、N棱柱; 棱柱体积统一等于底面面积乘以高,即V=SH, 第二类:锥体; 包括:圆锥体和棱锥体,棱锥分为三棱锥、四棱锥以及N棱锥; 棱锥体积统一为V=SH/3, 第三类:球体; 此分类只包含球一种几何体, 体积公式V=4R3/3, 其他不常用分类:圆台、棱台、球冠等很少接触到。 大多几何体都由这些几何体组成。 (2)平面几何图形如何分类 a.圆形 b.多边形:三角形(分为一般三角形,直角三角形,等腰三角形,等边三角形)、四边形(分为不规则四边形,体形,平行四边形,平行四边形又分:矩形,菱形,正方形)、五边形、六 注:正方形既是矩形也是菱形 (参考教材:初中数学七年级人教版) 以上初一上册数学知识点:几何图形初步是由数学网整理的,希望可以帮助大家。 |