对于初中学生朋友,学习是一个循序渐进的过程,需要日积月累。数学网提供了初一上册数学第五单元知识点,希望对大家学习有所帮助。 一、方程的有关概念 1.方程:含有未知数的等式就叫做方程. 2.一元一次方程:只含有一个未知数(元)x,未知数x的指数都是1(次),这样的方程叫做一元一次方程.例如:2023+50x=2023,2(x+1.5x)=5等都是一元一次方程. 3.方程的解:使方程中等号左右两边相等的未知数的值,叫做方程的解. 注:⑴方程的解和解方程是不同的概念,方程的解实质上是求得的结果,它是一个数值(或几个数值),而解方程的含义是指求出方程的解或判断方程无解的过程.⑵方程的解的检验方法,首先把未知数的值分别代入方程的左、右两边计算它们的值,其次比较两边的值是否相等从而得出结论. 二、等式的性质 等式的性质(1):等式两边都加上(或减去)同个数(或式子),结果仍相等.用式子形式表示为:如果a=b,那么ac=bc (2)等式的性质(2):等式两边乘同一个数,或除以同一个不为0的数,结果仍相等,用式子形式表示为:如果a=b,那么ac=bc;如果a=b(c0),那么ac=bc 三、移项法则:把等式一边的某项变号后移到另一边,叫做移项. 四、去括号法则 1.括号外的因数是正数,去括号后各项的符号与原括号内相应各项的符号相同. 2.括号外的因数是负数,去括号后各项的符号与原括号内相应各项的符号改变. 五、解方程的一般步骤 1、去分母(方程两边同乘各分母的最小公倍数) 2、去括号(按去括号法则和分配律) 3、移项(把含有未知数的项移到方程一边,其他项都移到方程的另一边,移项要变号) 4、合并(把方程化成ax=b(a0)形式) 5.系数化为1(在方程两边都除以未知数的系数a,得到方程的解x=ba). 六、用方程思想解决实际问题的一般步骤 1、审:审题,分析题中已知什么,求什么,明确各数量之间的关系. 2.、设:设未知数(可分直接设法,间接设法) 3、列:根据题意列方程. 4、解:解出所列方程. 5、检:检验所求的解是否符合题意. 6、答:写出答案(有单位要注明答案) 七、有关常用应用类型题及各量之间的关系 1、和、差、倍、分问题: (1)倍数关系:通过关键词语是几倍,增加几倍,增加到几倍,增加百分之几,增长率来体现. (2)多少关系:通过关键词语多、少、和、差、不足、剩余来体现. 2、等积变形问题: 等积变形是以形状改变而体积不变为前提.常用等量关系为: ①形状面积变了,周长没变; ②原料体积=成品体积. 3、劳力调配问题: 这类问题要搞清人数的变化,常见题型有: (1)既有调入又有调出; (2)只有调入没有调出,调入部分变化,其余不变; (3)只有调出没有调入,调出部分变化,其余不变 4、数字问题 (1)要搞清楚数的表示方法:一个三位数的百位数字为a,十位数字是b,个位数字为c(其中a、b、c均为整数,且19,09,09)则这个三位数表示为:100a+10b+c. (2)数字问题中一些表示:两个连续整数之间的关系,较大的比较小的大1;偶数用2n表示,连续的偶数用2n+2或2n2表示;奇数用2n+1或2n1表示. 5、工程问题: 工程问题中的三个量及其关系为:工作总量=工作效率工作时间 6、行程问题: (1)行程问题中的三个基本量及其关系:路程=速度时间. (2)基本类型有 ①相遇问题; ②追及问题;常见的还有:相背而行;行船问题;环形跑道问题. 7、商品销售问题 有关关系式: 商品利润=商品售价商品进价=商品标价折扣率商品进价 商品利润率=商品利润/商品进价 商品售价=商品标价折扣率 8、储蓄问题 ⑴顾客存入银行的钱叫做本金,银行付给顾客的酬金叫利息,本金和利息合称本息和,存入银行的时间叫做期数,利息与本金的比叫做利率.利息的20%付利息税 ⑵利息=本金利率期数 本息和=本金+利息 利息税=利息税率(20%) 提供的初一上册数学第五单元知识点,是我们精心为大家准备的,希望大家能够合理的使用! |